#$Migrating from DAO to ADO
Using ADO with the Jet Provider

Alyssa Henry
March 1999

Introduction

This document is designed as a guide to performing common Microsoft® Data Access
Objects (DAO) programming tasks with equivalent Microsoft ActiveX® Data Objects
(ADO) code. It details the mapping between DAO and ADO objects, properties, and
methods. It also highlights areas where there are functional or semantic differences
between similarly-named methods or properties.

This document is also a guide for those who are writing new applications using ADO
with the OLE DB Provider for Microsoft Jet (Jet Provider). It describes many features of
the Jet Provider and demonstrates how to use them with ADO. Because the ADO
documentation was designed to be provider-neutral, it lacks much of this information.

This document does not attempt to provide in-depth detail on particular objects,
properties, or methods. Refer to the online documentation provided with DAO and ADO
for specific details on a particular item.

Three distinct object models in ADO together provide the functionality found in DAO.
These three models are ADO, Microsoft ADO Extensions for DDL and Security (ADOX),
and Microsoft Jet and Replication Objects (JRO). The functionality of DAO was divided
among these three models because many applications will need just one of these
subsets of functionality. By splitting the functionality out, applications do not need to
incur the overhead of loading additional information into memory unnecessarily. The
following sections provide an overview of these three object models.

ADO enables your client applications to access and manipulate data through any OLE
DB provider. ADO contains objects for connecting to a data source and reading,
adding, updating, or deleting data.

{bmc ADOObjectModel.bmp?}

The ADOX model contains objects for data definition (such as tables, views, and
indexes) and creating and modifying users and groups. With ADOX, an administrator
can control database schema and grant and revoke permissions on objects to users
and groups.

MigratingDAOtoADO
$ Migrating from DAO to ADO

With ADO and ADOX, the Connection object defines a session for a user for a data
source. The Catalog object is the container for the data definition collections (Tables,
Procedures, and Views) and the security collections (Users and Groups). Each
Catalog object is associated with only one Connection to an underlying data source.

The ADOX model differs somewhat from the DAO model. DAO has a Workspace
object that defines a session for a user but does not define the data source. The
Workspace object is also the container for the Users and Groups collections. A
Workspace can be created, and security information can be retrieved or modified
without opening a database.

{bmc ADOXObjectModell.bmp}

Each of the Table, Index, and Column objects also has a standard ADO Properties
collection.

{bmc ADOXObjectModel2.bmp}

The JRO model contains objects, properties, and methods for creating, modifying, and
synchronizing replicas. It is designed specifically for use with the Jet Provider. Unlike
ADO and ADOX, JRO cannot be used with data sources other than Microsoft Jet
databases.

The primary object in the JRO model is the Replica object. The Replica object is used
to create new replicas, to retrieve and modify properties of an existing replica, and to
synchronize changes with other replicas. This differs from DAO in which the Database
object is used for these tasks.

JRO also includes a JetEngine object, for two specific Microsoft Jet database engine
features: compacting the database and refreshing data from the memory cache.

{bmc JROObjectModel.bmp?}

Getting Started

To run the code examples in this document, you need references to the ADO, ADOX,
and JRO type libraries in your database or project. By default, new Microsoft Access
2000 databases have a reference to ADO. However, to run these samples you'll need
to add references to ADOX and JRO. If you converted an existing database to Access
2000 or are programming in Microsoft Visual Basic® or some other application, you
will need to include all of the references yourself.

To add these references in Access 2000:

Open a module.

From the Tools menu select References...

From the list, select "Microsoft ActiveX Data Objects 2.1 Library."

From the list, select "Microsoft ADO Ext. 2.1 for DDL and Security."
From the list, select "Microsoft Jet and Replication Objects 2.1 Library."
Click OK.

ok wN e

To add these references in Visual Basic:

Open a project.

From the Project menu select References...

From the list, select "Microsoft ActiveX Data Objects 2.1 Library."

From the list, select "Microsoft ADO Ext. 2.1 for DDL and Security."
From the list, select "Microsoft Jet and Replication Objects 2.1 Library."
Click OK.

If you include references to both ADO and DAO in the same project, you need to
explicitly specify which library to use when declaring objects because DAO and ADO
include several objects with the same names. For example, both models include a
Recordset object, so the following code is ambiguous:

ok wN e

Dimrst as Recordset

To specify which object model you want to use, include a qualifier as shown:

Dim rst ADO As ADCDB. Recor dset
Di m rst DAO As DAQO. Recor dset

If the qualifier is omitted, Visual Basic for Applications will choose the object from the
model that is referenced first. So if your list of references were ordered as follows in
the References dialog box, an object declared as Recordset with no qualifier would be
a DAO Recordset.

Vi sual Basic For Applications

M crosoft DAO 3.6 hject Library

M crosoft ActiveX Data Objects 2.1 Library

M crosoft ADO Ext. 2.1 for DDL and Security

M crosoft Jet and Replication Cbjects 2.1 Library

Opening a Database

Generally, one of the first steps in writing an application to access data is to open the
data source. When using the Microsoft Jet database engine, you can open Microsoft Jet
databases, other external data sources such as Microsoft Excel, Paradox, and dBASE
with Microsoft Jet's ISAM components, and ODBC data sources.

The Jet Provider can open Microsoft Jet 4.0 databases as well as databases created
with previous versions of the Jet database engine.

The following code demonstrates how to open a Microsoft Jet database for shared,
updatable access. Then the code immediately closes the database because this code is
for demonstration purposes.

DAO

Sub DAOOpenJet Dat abase()

D mdb As DAQ. Dat abase

Set db = DBEngi ne. OpenDat abase(" C:\ N\wi nd. ndb")
db. d ose

End Sub

ADO
Sub ADOOpenJet Dat abase()

Di m cnn As New ADODB. Connecti on

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ N\wi nd. ndb; "
cnn. Cl ose

End Sub

These two code listings for opening a database look somewhat different, but are not all
that dissimilar. Aside from the fact that the objects have different names, the major
difference is the format of the string passed in to the open method.

The ADO connection string in this example has two parts: the provider tag and the
data source tag. The provider tag indicates which OLE DB provider to use, and the
data source tag indicates which database to open. With DAOQ, it is assumed that you
want to use Microsoft Jet, whereas with ADO you must explicitly specify that you want
to use Microsoft Jet.

By default, both DAO and ADO open a database for shared updatable access, when
using the Jet Provider. However, there may be times when you want to open the
database exclusively or in read-only mode.

The following code listings show how to open (and then close) a shared, read-only
database using in DAO and ADO.

DAO
Sub DAOOpenJet Dat abaseReadOnl y()

D m db As DAO. Dat abase
" Open shared, read-only.
Set db = DBEngi ne. OpenDat abase(" C:\ nwi nd. ndb", Fal se, True)

db. d ose

End Sub

ADO

Sub ADOOpenJet Dat abaseReadOnl y()

D mcnn As New ADCDB. Connecti on

" Open shared, read-only

cnn. Mode = adWbdeRead

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "
cnn. Cl ose

End Sub

In the DAO listing, the second two parameters to the OpenDatabase method indicate
exclusive and read-only access respectively. In the ADO listing, the Connection objec
Mode property is set to the read-only constant (adModeRead). By default, ADO
connections are opened for shared, updatable access unless another mode is set (for
example, adModeShareExclusive).

Alternatively, the ADO listing could have been written in a single line of code as
follows:

Sub OpenJet Dat abaseExcl usi ve()

Di m cnn As New ADODB. Connecti on

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; Mode=" & adMbdeRead
cnn. Cl ose

End Sub

In this listing, the Mode property was specified as a part of the connection string to
the Open method rather than as a property of the Connection object. In ADO, you
can set connection properties as a property or string them together with other
properties to create the connection string. Even provider-specific properties (prefixed
by "Jet OLEDB:" for Jet-specific properties) can be set as part of the connection string
or with the Connection object's Properties collection. For a description of the
available properties, see "Appendix B: Properties Reference" later in this document.

The Microsoft Jet database engine exposes a number of settable options that will
dictate how the engine will behave. These options often have a direct impact on
performance. By default when the Jet database engine is initialized, it uses the values
set in the Windows registry under the
\HKEY_LOCAL_MACHINES\Software\Microsoft\Jet key. At run time, it is possible to
temporarily override these settings. In ADO, these values are set as part of the
connection string.

The following listings demonstrate how to override the Page Timeout setting of the
engine and open a database using that setting.

DAO

Sub DACSet Jet DBOpt i on()
D mdb As DAQ. Dat abase

Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")
DBEngi ne. Set Opti on dbPageTi meout, 4000
db. d ose

End Sub

ADO
Sub ADOSet Jet DBOpt i on()

D mcnn As New ADCDB. Connecti on

cnn. Provider = "M crosoft. Jet. OLEDB. 4. 0"

cnn. Open "C:\ nwi nd. ndb"

cnn. Properties("Jet OLEDB: Page Tineout") = 4000
cnn. C ose

End Sub

With DAO, you use the SetOption method to set the values for these database
settings. There is no corresponding GetOption method to retrieve the values. With
ADO, you use a property in the Connection object's Properties collection. You can
read the value of the property using ADO; however this value is not accurate unless
you have previously set the value for the property. For example, the Jet OLEDB:Page
Timeout property will return the value 0 prior to setting this property even though the
value defined for this property in the
HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\Engines\Jet 4.0\PageTimeout
registry key is actually 5000.

Another minor difference between ADO and DAO is that with ADO the Connection
must be opened before these properties are available. With DAO, these properties can
be set on the DBEngine object prior to opening the database.

As shown in the listings, you can optionally set the provider in the Provider property,
rather than in the connection string. The "Data Source=" section of the connection
string can also be omitted, and ADO will assume this is the default value for the path
in the connection string. This is simply an alternative method of opening a connection;
with ADO there are sometimes many equally valid ways to accomplish a task. Later in
this document, the section "Opening a Database with User Level Security," explains a
scenario where it is required that you indicate the provider in the Provider property
rather than in the connection string.

The following table lists the values that can be set with DAO's SetOption method and
the corresponding property to use with ADO.

DAO constant ADO property

dbPageTimeout
dbSharedAsyncDelay
dbExclusiveAsyncDelay
dbLockRetry
dbUserCommitSync
dbImplicitCommitSync
dbMaxBufferSize
dbMaxLocksPerFile
dbLockDelay
dbRecyclelLVs

dbFlushTransactionTimeout

Jet OLEDB:
Jet OLEDB:

Jet OLEDB

Jet OLEDB

Jet OLEDB

Page Timeout

Shared Async Delay

:Exclusive Async Delay
Jet OLEDB:
Jet OLEDB:

Lock Retry

User Commit Sync

:Implicit Commit Sync
Jet OLEDB:
Jet OLEDB:

Max Buffer Size

Max Locks Per File

:Lock Delay
Jet OLEDB:
Jet OLEDB:

Recycle Long-Valued Pages

Flush Transaction Timeout

Microsoft Jet databases can be secured in one of two ways: with either share-level
security or user-level security. With share-level security, the database is secured with
a password. Anyone attempting to open the database must specify the correct
database password. With user-level security, each user is assigned a user name and
password to open the database. Microsoft Jetuses a separate workgroup information
file, typically named "system.mdw" to store user information and passwords. See the
section, "Security" for more information about creating and using secured Microsoft

Jetdatabases.

Share-Level (Password Protected)

Databases

The following listings demonstrate how to open a Microsoft Jet database that has been

secured at the share level.
DAO

Sub DAOOpenDBPasswor dDat abase()

D mdb As DAQ. Dat abase

Set db = DBEngi ne. OpenDat abase(" C.\ nwi nd. ndb", Fal se, Fal se,

"; pwd=passwor d")
db. d ose

End Sub

ADO

Sub ADOOpenDBPasswor dDat abase()

D mcnn As New ADCDB. Connecti on

cnn. Open "Provi der=M crosoft.Jet. CLEDB. 4.0;" & _
"Dat a Source=C:.\ nwi nd. ndb; Jet OLEDB: Dat abase Passwor d=password;"
cnn. Cl ose

End Sub

In DAO, the Connect parameter of the OpenDatabase method sets the database
password when opening a database. With ADO, the Jet Provider connection property
Jet OLEDB:Database Password sets the password instead.

Opening a Database with User-Level
Security

This next listings demonstrate how to open a database that is secured at the user level
using a workgroup information file named "sysdb.mdw".

DAO
Sub DAOOpenSecur edDat abase()

D m wks As DAO. Wor kspace
D m db As DAO. Dat abase

DBENngi ne. SystenDB = "c: \sysdb. mdw'
Set wks = DBEngi ne. Cr eat eWor kspace("", "Admi n", "password")
Set db = wks. OpenDat abase("c:\ nw nd. ndb")

End Sub

ADO
Sub ADOOpenSecur edDat abase()

Di m cnn As New ADODB. Connecti on

cnn. Provider = "M crosoft.Jet. OLEDB. 4. 0"
cnn. Properties("Jet OLEDB: System dat abase") = "c:\sysdb. mdw'
cnn. Open "Data Source=c:\nw nd. mdb; User | d=Adm n; Passwor d=password; "

End Sub

In ADO, a Microsoft Jet provider-specific connection property, Jet OLEDB:System
database, specifies the system database. This is equivalent to setting the DBEngine
object's SystemDB property before opening a database using DAO.

Notice that in this example, the Provider property is set as a property of the
Connection object rather than as part of the ConnectionString argument to the Open
method. That is because before you can reference provider-specific properties from the
Connection object's Properties collection, it is necessary to indicate which provider
you are using. If the first line of code had been omitted, error 3265
(adErrItemNotFound), "ADO could not find the object in the collection corresponding
to the name or ordinal reference requested by the application." would have occurred
when trying to set the value for the Jet OLEDB:System database property.

Note that in both DAO and ADO, setting the system database may not be necessary.
You may omit the code that sets the system database if you want to use the current
Microsoft Jet workgroup information file as specified in the SystemDB key in the
Microsoft Jet registry entries.

The Microsoft Jet database engine can be used to access other database files,
spreadsheets, and textual data stored in tabular format through installable ISAM
drivers.

The following listings demonstrate how to open a Microsoft Excel 2000 spreadsheet
first using DAO, then using ADO and the Jet provider.

DAO
Sub DAQOOpenl| SAMDat abase()

Di m db As DAQ. Dat abase

Set db = DBEngi ne. OpenDat abase(" C. \ Sal es. xl s",
Fal se, Fal se, "Excel 8.0;")

db. d ose

End Sub

ADO
Sub ADOOpenl| SAMDat abase()

Di m cnn As New ADODB. Connecti on

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Source=C:\ Sal es. x|l s; Ext ended Properti es=Excel 8.0;"

cnn. Cl ose

End Sub

The DAO and ADO code for opening an external database is similar. In both examples,
the name of the external file (Sales.xlIs) is used in place of a Microsoft Jet database file
name. With both DAO and ADO you must also specify the type of external database
you are opening, in this case, an Excel 2000 spreadsheet. With DAO, the database
type is specified in the Connect argument of the OpenDatabase method. The
database type is specified in the Extended Properties property of the Connection
with ADO. The following table lists the strings to use to specify which ISAM to open.

Database String
dBASE III dBASE III;
dBASE 1V dBASE 1V;
dBASE 5 dBASE 5.0;
Paradox 3.x Paradox 3.x;
Paradox 4.x Paradox 4.x;
Paradox 5.x Paradox 5.x;
Excel 3.0 Excel 3.0;
Excel 4.0 Excel 4.0;
Excel 5.0/Excel 95 Excel 5.0;
Excel 97 Excel 97;
Excel 2000 Excel 8.0;
HTML Import HTML Import;
HTML Export HTML Export;
Text Text;
ODBC ODBC;
DATABASE=database;
UID=user;

PWD=password,
DSN=datasourcename;

Note that if you are migrating from DAO 3.5 or earlier with the FoxPro ISAM to ADO
with the Jet Provider, you will need to use Visual FoxPro ODBC Driver as Microsoft Jet
4.0 does not support the FoxPro ISAM.

When you open an Access database, you are opening a Microsoft Jet database. When
writing code within Access, you may often want to use the same connection to
Microsoft Jet as Access is using. To allow you to do this, Microsoft Access 2000
exposes two mechanisms: CurrentDB() and CurrentProject.Connection that allow
you to get a DAO Database object and an ADO Connection object, respectively, for
the database Access currently has open.

The following listings demonstrate how to get a reference to the database currently
open in Microsoft Access.

DAO
Sub DAOGet Cur r ent Dat abase()

D mdb As DAQ. Dat abase
Set db = CurrentDb()

End Sub

ADO
Sub ADOGet Cur r ent Dat abase()

Di m cnhn As ADODB. Connecti on
Set cnn = CurrentProject. Connection

End Sub

Retrieving and Modifying Data

Both DAO and ADO include a Recordset object that is the primary object used for
retrieving and modifying data. A Recordset object represents a set of records in a
table or a set of records that are a result of a query.

The Recordset object contains a Fields collection that contains Field objects, each of
which represent a single column of data within the Recordset.

Like DAO, ADO Recordset objects can be opened from several different objects. In
ADO, a Recordset can be opened with the Connection object Execute method, the
Command object Execute method, or the Recordset object Open method. ADO
Recordset objects cannot be opened directly from Table, Procedure, or View
objects. ADO Recordset objects opened with the Execute method are always
forward-only, read-only recordsets. If you need to be able to scroll or update data
within the Recordset you must use the Recordset object Open method.

The CursorType, LockType, and Options parameters of the Open method determine
the type of Recordset that is returned. The table below shows how the parameters to
the DAO Recordset object Open method can be mapped to ADO properties.

DAO Recordset type ADO Recordset properties or parameters
dbOpenDynaset CursorType=adOpenKeyset
dbOpenSnapshot CursorType=adOpenStatic

dbOpenForwardOnly CursorType=adOpenForwardOnly

dbOpenTable CursorType=adOpenKeyset,
Options=adCmdTableDirect

DAO Recordset Options values ADO Recordset properties

dbAppendOnly Properties("Append-Only Rowset")

dbSQLPassThrough Properties("Jet OLEDB:ODBC Pass-Through
Statement")

dbSeeChanges No equivalent.

dbDenyWrite No equivalent.

dbDenyRead No equivalent.

dbInconsistent Properties("Jet OLEDB:Inconsistent") = True

dbConsistent Properties("Jet OLEDB:Inconsistent") = False

DAO Recordset LockType values ADO Recordset LockType values

dbReadOnly adLockReadOnly
dbPessimistic adLockPessimistic
dbOptimistic adLockOptimistic

The Jet Provider does not support a number of combinations of CursorType and
LockType. For example, CursorType=adOpenDynamic and
LockType=adLockOptimistic. If you specify an unsupported combination, ADO will
pass your request to the Jet Provider, which will then degrade to a supported
CursorType or LockType. Use the CursorType and LockType properties of the
Recordset once it is opened to determine what type of Recordset was created.

The following listings demonstrate how to open a forward-only, read-only Recordset,
then prints the values of each field.

DAO
Sub DAOOpenRecor dset ()

D mdb As DAQ. Dat abase
Dmrst As DAQO. Recor dset
Dmfld As DAO Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("Sel ect * from Custoners where Region" & _
"= "WA'", dbOpenForwardOnly, dbReadOnly)

Print the values for the fields in the first record in the debug
wi ndow
For Each fld In rst.Fields
Debug. Print fld.vValue & ";";
Next

"Cl ose the recordset
rst.Cl ose

End Sub

ADO
Sub ADOOpenRecor dset ()

D mcnn As New ADCDB. Connecti on
Dmrst As New ADCDB. Recor dset
Dmfld As ADODB. Fi el d

Open t he connection

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "
" Open the forward-only, read-only recordset

rst.Open "Select * from Custonmers where Region = "WA'", cnn,
adOpenForwar dOnl y, adLockReadOnly

Print the values for the fields in the first record in the debug
wi ndow
For Each fld In rst.Fields
Debug. Print fld.vValue & ";";
Next

"Cl ose the recordset
rst.Cl ose

End Sub

In the DAO and ADO code above, the Recordset is opened and then the data in the
first record of the Recordset is printed to the Debug by iterating through each field in
the Fields collection and printing its Value.

Using Client Cursors

ADO Recordset objects have an additional property, CursorLocation, not found in
DAO that affects the functionality and performance of the Recordset. This property

has two valid values: adUseServer and adUseClient. The default is adUseServer,
which indicates that the provider's or data source's cursors should be used.

When the CursorLocation property is set to adUseClient, ADO will invoke the
Microsoft Cursor Service for OLE DB to create the Recordset. The Cursor Service
retrieves data from the underlying data provider using a forward-only, read-only
cursor and stores all of the data in its own cache on the client. When data is requested
through ADO, the Cursor Service returns the data from its own cache rather than
passing the request down to the provider. This often results in fairly significant
performance gains when the underlying data source is on a remote server as is often
the case with SQL Server. However, when the data is stored in a local Microsoft Jet
database, this can result in fairly significant performance degradation as the data is
being cached twice on the client, once in Microsoft Jet and once in the Cursor Service.

While there may be a performance penalty for using the Cursor Service, it does
provide some functionality found in DAO that is not currently exposed in the Jet
Provider. For example, adUseClient must be specified for CursorLocation in order to
sort an existing Recordset. (See the section, "Filtering and Sorting Data in a
Recordset" for more information about how to use the Cursor Service to sort a
Recordset.)

When developing your application, you'll generally want to specify adUseServer as
the CursorLocation to get performance and functionality similar to DAO. However, in
the few cases where the Jet Provider does not provide the functionality needed,
consider using client cursors.

A Recordset object has a current position. The position may be before the first record
(BOF), after the last record (EOF), or on a specific record within the Recordset.
When retrieving information with the Field object, the information always pertains to
the record at the current position.

Moving To Another Record

Both DAO and ADO contain several methods for moving from one record to another.
These methods are: Move, MoveFirst, MovelLast, MoveNext, and MovePrevious.

The following listings demonstrate how to use the MoveNext method to iterate
through all of the records in the Recordset.

DAO
Sub DAOWbveNext ()

D mdb As DAQ. Dat abase
Dmrst As DAQO. Recor dset
Dmfld As DAQO Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset

Set rst = db. OpenRecordset ("Sel ect * from Customers where Region" & _
"= WA ", dbOpenForwardOnly, dbReadOnly)

" Print the values for the fields in the first record in the debug
" W ndow
Wil e Not rst.ECF
For Each fld In rst.Fields
Debug. Print fld.Value & ";";
Next
Debug. Pri nt
rst. MoveNext

Wend

"Cl ose the recordset
rst.d ose

End Sub

ADO
Sub ADOVbveNext ()

D mcnn As New ADCDB. Connecti on
Di mrst As New ADODB. Recor dset
Dmfld As ADODB. Fi el d

Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the forward-only, read-only recordset
rst.Open "Select * from Custonmers where Region = "WA'", cnn,
adOpenForwar dOnl y, adLockReadOnly

" Print the values for the fields in the first record in the debug
" wi ndow
Wil e Not rst.ECF
For Each fld In rst.Fields
Debug. Print fld.vValue & ";";
Next
Debug. Print
rst. MoveNext

Wend

"Close the recordset

rst.Cl ose

End Sub

Notice that the code for iterating through the Recordset in DAO and ADO is identical.

For this particular example, the ADO code could be rewritten to use the Recordset
object's GetString method to print the data to the Debug window. This method
returns a formatted string containing data from the the records in the recordset. Using
GetString, the While loop in the previous ADO example could be replaced with the
single line:

Debug. Print rst.GetString(addipString, , ";")

This method is handy for debugging as well as populating grids and other controls that
allow you to pass in a formatted string representing the data. GetString is also faster
than looping through the Recordset and generating the string with Visual Basic for
Applications code.

The ADO example could also have been rewritten more concisely by using the
Recordset object's Open method's ActiveConnection parameter to specify the
connection string rather than first opening a Connection object and then passing that
object in as the ActiveConnection. The Recordset object's Open method call would
look like this:

rst.pen "Select * from Custoners where Region = "WA'", _
"Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. mdb; ",
adOpenForwar dOnl y, adLockReadOnly

Internally, these two mechanisms are essentially the same. When you pass a
connection string to the Recordset object's Open method (rather than assigning a
Connection object to the Recordset object's ActiveConnection property), ADO
creates a new, internal Connection object. However, ADO will create a new internal
Connection object for each Recordset you open using a connection string. If you
plan on opening more than one Recordset from a given data source, or opening
Command or Catalog objects, create a Connection object and use that object for
the ActiveConnection. This will reduce the amount of resources consumed and
increase performance.

Determining Current Position

When working with records in a Recordset it may be useful to know what the record
number of the current record is. Both ADO and DAO have an AbsolutePosition
property that can be used to determine the record number. The following code listings
demonstrate how to use the AbsolutePosition property in both DAO and ADO.

DAO
Sub DAOGet Current Posi tion()

D mdb As DAQ. Dat abase
Di mrst As DAO Recordset

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset

Set rst = db. OpenRecordset ("Sel ect * from Custoners", dbOpenDynaset)
" Print the absolute position
Debug. Print rst. Absol utePosition

" Move to the last record
rst. MovelLast

" Print the absolute position
Debug. Print rst. Absol utePosition
" Close the recordset
rst.Cl ose

End Sub

ADO
Sub ADOGet Current Posi tion()

Di m chn As New ADCDB. Connecti on

Di mrst As New ADCDB. Recor dset

" Open the connection

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the recordset

rst.CursorlLocation = adUseC i ent

rst.Qpen "Select * From Custoners”, cnn, adQOpenKeyset,
adLockOpti mi stic, adCndText

" Print the absolute position

Debug. Print rst. Absol utePosition

" Move to the last record
rst. MoveLast

" Print the absolute position
Debug. Print rst. Absol utePosition

" Close the recordset
rst.Cl ose

End Sub

The ADO and DAO code for determining the current position within the Recordset
looks very similar. However, note that the results printed to the debug window are
different. With DAO, the AbsolutePosition property is zero-based; the first record in
the recordset has an AbsolutePosition of 0. With ADO, the AbsolutePosition
property is one-based; the first record in the recordset has an AbsolutePosition of 1.

Note that in the ADO code example, the CursorLocation property is set to
adUseClient. If the CursorLocation is not specified or is set to adUseServer, the
AbsolutePosition property will return adUnknown (-1) because the Jet Provider
does not support retrieving this information. See the section, "Using Client Cursors" for
more information about using the CursorLocation property.

In addition to the AbsolutePosition property, DAO also has a PercentPosition
property that returns a percentage representing the approximate position of the
current record within the Recordset. ADO does not have a property or method that
provides the functionality equivalent to DAQO's PercentPosition property. However,
when using client cursors (adUseClient), the user can calulate an approximate
percent position from the CursorLocation and RecordCount properties in ADO.

Both DAO and ADO have two mechanisms for locating a record in a Recordset: Find
and Seek. With both mechanisms you specify criteria to use to locate a matching
record. In general, for equivalent types of searches, Seek provides better performance
than Find. However, because Seek uses an underlying index to locate the record, it is
limited to Recordset objects that have associated indexes. For Microsoft Jet databases
only, Recordset objects based on a table (DAO dbOpenTable, ADO
adCmdTableDirect) with an index support Seek.

Using the Find Method

The following listings demonstrate how to locate a record using Find.
DAO

Sub DAOFi ndRecor d()

Di m db As DAQ. Dat abase
Di mrst As DAO Recordset

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("Custoners", dbOpenDynaset)

" Find the first custoner who's country is USA
rst.FindFirst "Country = "USA "

" Print the custoner id' s of all custonmers in the USA
Whi |l e Not rst.NoMatch

Debug. Print rst.Fields("Custonerld"). Val ue

rst. FindNext "Country = " USA "
Wend

" Close the recordset
rst.Cl ose

End Sub

ADO
Sub ADOFi ndRecor d()

Di mcnn As New ADODB. Connecti on
Di mrst As New ADODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the recordset
rst.Open "Custoners", cnn, adOpenKeyset, adLockOptimstic

" Find the first custoner who's country is USA
rst.Find "Country="USA "

" Print the custoner id' s of all custonmers in the USA
Wil e Not rst.ECF
Debug. Print rst.Fields("Custonmerld"). Val ue
rst.Find "Country="USA" ", 1
Wend

" Close the recordset
rst.Cl ose

End Sub

DAO includes four find methods: FindFirst, FindLast, FindNext, FindPrevious. You
choose which method to use based on the point from which you want to start

searching (beginning, end, or curent record) and in which direction you want to search
(forward or backward).

ADO has a single method: Find. Searching always begins from the current record. The
Find method has parameters that allow you to specify the search direction as well as
an offset from the current record at which to beginning searching (SkipRows). The
following table shows how to map the four DAO methods to the equivalent
functionality in ADO.

DAO method ADO Find with ADO search direction
SkipRows
FindFirst 0 adSearchForward (if not currently

positioned on the first record, call MoveFirst
before Find)

FindLast 0 adSearchBackward (if not currently
positioned on the last record, call MovelLast
before Find)

FindNext 1 adSearchForward
FindPrevious 1 adSearchBackward

DAO and ADO require a different syntax for locating records based on a Null value. In
DAO if you want to find a record that has a Null value you use the following syntax:

"Col umNane I's Nul I "

or, to find a record that does not have a Null value for that column:

"Col umNane |I's Not Null"

ADO, however, does not recognize the Is operator. You must use the = or <>
operators instead. So the equivalent ADO criteria would be:

"Col umNanme = Nul |"

or

"Col umNanme <> Nul | "

So far, each of the criteria shown in the examples above are based on a value for a
single column. However, with DAO, the Criteria parameter is like the WHERE clause in
an SQL statement and can contain multiple columns and compare operators within the
criteria.

This is not the case with ADO. The ADO Criteria parameter is a string containing a
single column name, comparison operator, and value to use in the search. If you need
to find a record based on multiple columns, use the Filter property (see the section,
"Filtering and Sorting Data") to create a view of the Recordset that only contains
those records matching the criteria.

DAO and ADO behave differently if a record that meets the specified criteria is not
found. DAO sets the NoMatch property to True and the current record is not defined.
If ADO does not find a record that meets the criteria, the current record is positioned
either before the beginning of the Recordset if searching forward

(adSearchForward) or after the end of the Recordset if searching backward
(adSearchBackward). Use the BOF or EOF properties as appropriate to determine
whether or not a match was found.

Using the Seek Method

The following listings demonstrate how to locate a record using Seek.
DAO

Sub DAGSeekRecord()

D mdb As DAQ. Dat abase
Dmrst As DAQO. Recor dset

' Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("order Details", dbOpenTabl e)

" Select the index used to order the data in the recordset
rst.lndex = "PrimryKey"

" Find the order where Orderld = 10255 and Productld = 16
rst.Seek "=", 10255, 16

" If amtch is found print the quantity of the order
If Not rst.NoMatch Then

Debug. Print rst.Fields("Quantity"). Val ue
End If

" Close the recordset
rst.Cl ose

End Sub

ADO
Sub ADOSeekRecor d()

Di m cnn As New ADODB. Connecti on
Di mrst As New ADODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. nmdb; "

" Select the index used to order the data in the recordset
rst.lndex = "PrimaryKey"

" Open the recordset
rst.Open "Order Details", cnn, adOpenKeyset, adLockOptim stic,
adCmdTabl eDi r ect

" Find the order where Orderld = 10255 and Productld = 16
rst.Seek Array(10255, 16), adSeekFirstEQ

" If amtch is found print the quantity of the order
If Not rst.EOF Then

Debug. Print rst.Fields("Quantity"). Val ue
End If

" Close the recordset
rst.Cl ose

End Sub

Because Seek is based on an index, it is important to specify an index before
searching. In the previous example, this is not strictly necessary because Microsoft Jet
will use the primary key if an index is not specified.

In the ADO example, the Visual Basic for Applications Array function is used when
specifying a value for more than one column as part of the KeyValues parameter. If
only one value is specified, it is not necessary to use the Array function.

As with the Find method, use the NoMatch property with DAO to determine whether
or not a matching record was found. Use the BOF and EOF properties as appropriate
with ADO.

In general, filtering and sorting of data should be done by specifying an SQL WHERE or
ORDER BY clause in the SQL statement or stored query used to open the Recordset.

Using the Filter Property

The following listings demonstrate how to use the Filter property.
DAO

Sub DACFi | t er Recor dset ()

Di m db As DAQ. Dat abase

Dmrst As DAQO. Recor dset
DmrstFIt As DAO Recordset

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("Custoners”, dbQpenDynaset)

" Set the Filter to be used for subsequent recordsets
rst.Filter = "Country="USA" And Fax |s not Null"

" Open the filtered recordset

Set rstFIt = rst. OpenRecordset ()

Debug. Print rstFlt.Fields("Custonerld"). Val ue
' Close the recordsets
rst.d ose

rstFlt.d ose

End Sub

ADO
Sub ADOCFi | t er Recor dset ()

Di m cnn As New ADODB. Connecti on
D mrst As New ADODB. Recor dset

" Open the connection

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "
" Open the recordset

rst.Qpen "Custoners”, cnn, adOpenKeyset, adLockOptim stic

" Filter the recordset to include only those custoners in
" the USA that have a fax nunber

rst.Filter = "Country="USA" And Fax<>Nul | "

Debug. Print rst.Fields("Custonerld"). Val ue

" Close the recordset
rst.d ose

End Sub

The DAO and ADO Filter properties are used slightly differently. With DAO, the Filter
property specifies a filter to be applied to any subsequently opened Recordset objects
based on the Recordset for which you have applied the filter. With ADO, the Filter
property applies to the Recordset to which you applied the filter. The ADO Filter
property allows you to create a temporary view that can be used to locate a particular
record or set of records within the Recordset. When a filter is applied to the
Recordset, the RecordCount property reflects just the number of records within the
view. The filter can be removed by setting the Filter property to adFilterNone.

Using the Sort Method

The following listings demonstrate how to sort records with the Sort method.
DAO

Sub DAGCSort Recordset ()

D mdb As DAQ. Dat abase
Dmrst As DAQO. Recor dset
DmrstSort As DAO. Recordset

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("Custoners”, dbQpenDynaset)

' Sort the recordset based on Country and Region both in

ascendi ng order
rst.Sort = "Country, Region"

" Open the sorted recordset
Set rstSort = rst.OpenRecordset ()
Debug. Print rstSort. Fields("Custonerld"). Val ue

" Close the recordsets
rst.Cl ose
rstSort. Cl ose

End Sub

ADO
Sub ADOSort Recordset ()

D mcnn As New ADCDB. Connecti on
Dmrst As New ADCDB. Recor dset

Open t he connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

Open the recordset
rst. CursorlLocation = adUsed i ent
rst.Qpen "Custoners”, cnn, adOpenKeyset, adLockOptim stic

' Sort the recordset based on Country and Region both in
" ascendi ng order

rst.Sort = "Country, Region"

Debug. Print rst.Fields("Custonerld"). Val ue

Cl ose the recordset
rst.Cl ose

End Sub

Like the Filter property, the DAO and ADO Sort properties differ in that the DAO Sort
applies to subsequently opened Recordset objects, and for ADO it applies to the
current Recordset.

Note that the Jet Provider does not support the OLE DB interfaces that ADO could use
to filter and sort the Recordset (IViewFilter and IViewSort). In the case of Filter,
ADO will perform the filter itself. However, for Sort, you must use the Cursor Service
by specifying adUseClient for the CursorLocation property prior to opening the
Recordset. The Cursor Service will copy all of the records in the Recordset to a
cache on your local machine and will build temporary indexes in order to perform the
sorting. In many cases, you may achieve better performance by re-executing the
query used to open the Recordset and specifying an SQL WHERE or ORDER BY clause
as appropriate.

Also, you may not get identical results with DAO and ADO when sorting Recordset
objects. In the example above, the DAO code returns 'RANCH' as the CustomerlId while
the ADO code returns 'CACTU' as the CustomerlId. Both results are valid, but differ as
a result of different algorithms used by Microsoft Jet and the Cursor Service for sorting
data.

Once you have opened an updatable recordset by specifying the appropriate DAO
Recordset object Type or ADO CursorType and LockType you can change, delete,
or add new records using methods of the Recordset object.

Adding New Records

Both DAO and ADO allow you to add new records to an updatable Recordset by first
calling the AddNew method, then specifying the values for the fields, and finally
committing the changes with the Update method. The following code shows how to
add a new record using DAO and ADO.

DAO
Sub DAQAddRecor d()

D mdb As DAQ. Dat abase
Di mrst As DAO. Recordset

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset

Set rst = db. OpenRecordset ("Sel ect * from Custoners", dbOpenDynaset)
' Add a new record
rst. AddNew

" Specify the values for the fields
rst!Custonerld = "HENRY"

rst! CompanyNarme = "Henry's Chop House"
rst! ContactName = "Mark Henry"

rst!ContactTitle = "Sal es Representative”
rst! Address = "40178 NE 8th Street”
rst!City = "Bell evue"

rst!Region = "WA"

rst! Postal Code = "98107"
rst!Country = "USA"
rst!Phone = "(425) 899-9876"
rst!Fax = "(425) 898-8908"

' Save the changes you nmade to the current record in the Recordset
rst. Update

For this exanple, just print out Custonerld for the new record
" Position recordset on new record
rst.Bookmark = rst. Last Modified

Debug. Print rst! Custonerld

"Close the recordset
rst.Cl ose

End

ADO
Sub

End

Sub

ADOAddRecor d()

Di mcnn As New ADODB. Connecti on
Di mrst As New ADODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the recordset
rst.Open "Select * from Custonmers”, cnn, adOpenKeyset,
adLockOptim stic

' Add a new record
rst. AddNew

" Specify the values for the fields
rst!Customerld = "HENRY"

rst! ConpanyNanme = "Henry’'s Chop House"
rst!Contact Name = "Mark Henry"

rst!ContactTitle = "Sal es Representative"
rst! Address = "40178 NE 8th Street™
rst!City = "Bellevue"

rst!Region = "WA"

rst! Postal Code = "98107"
rst! Country = "USA"
rst!Phone = "(425) 899-9876"
rst!Fax = "(425) 898-8908"

' Save the changes you nmade to the current record in the Recordset
rst. Update

" For this exanple, just print out Custonerld for the new record
Debug. Print rst! Custonerld

"Cl ose the recordset
rst.Cl ose

Sub

DAO and ADO behave differently when a new record is added. With DAO, the record
that was current before you used AddNew remains current. With ADO, the newly
inserted record becomes the current record. Because of this, it is not necessary to
explicitly reposition on the new record to get information such as the value of an auto-
increment column for the new record. For this reason, in the ADO example above,
there is no equivalent code to the rst. Bookmark = rst. Last Mbdi fi ed code found in
the DAO example.

ADO also provides a shortcut syntax for adding new records. The AddNew method
has two optional parameters, FieldList and Values, that take an array of field names
and field values respectively. The following example demonstrates how to use the
shortcut syntax.

Sub ADOQAddRecor d2()

D mcnn As New ADCDB. Connecti on
Di mrst As New ADODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. nmdb; "

" Open the recordset
rst.Open "Select * from Shippers", cnn, adOpenKeyset,
adLockOptim stic

" Add a new record
rst. AddNew Array(" ConpanyNane", "Phone"),
Array("World Express”, "(425) 899-7863")

' Save the changes you nmade to the current record in the Recordset
rst. Updat e

" For this exanple, just print out the Shipperld for the new row.
Debug. Print rst! Shipperld

"Close the recordset
rst.Cl ose

End Sub

Updating Existing Records

The following code demonstrates how to open a scrollable, updatable Recordset and
modify the data in a record.

DAO
Sub DAQUpdat eRecor d()

D mdb As DAQ. Dat abase
Dmrst As DAQO. Recor dset

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("Sel ect * from Customers where " & _
"Custonerld = ' LAZYK ", dbOpenDynaset)

" Put the Recordset in Edit Mode
rst. Edit

" Update the Contact nane of the first record
rst.Fields("ContactNanme"). Val ue = "New Nane"

' Save the changes you nmade to the current record in the Recordset
rst. Update

"Cl ose the recordset
rst.Cl ose

End Sub

ADO
Sub ADOUpdat eRecor d()

Di mcnn As New ADODB. Connecti on
Di mrst As New ADODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the recordset
rst.QOpen "Select * from Custonmers where Custonerld = ' LAZYK ",
cnn, adOpenKeyset, adLockOptim stic

" Update the Contact nane of the first record
rst. Fields("Contact Nane"). Val ue = "New Nane"

' Save the changes you nmade to the current record in the Recordset
rst. Update

"Cl ose the recordset
rst.Cl ose

End Sub

Alternatively, in both the DAO and ADO code examples, the explicit syntax

rst! Cont act Nane = " New Name"

can be shortened to

rst. Fields("Contact Nanme"). Val ue = "New Nane"

The ADO and DAO code for updating data in a Recordset is very similar. The major
difference between the two examples above is that DAO requires that you put the
Recordset into an editable state with the Edit method. ADO does not require you to
explicitly indicate that you want to be in edit mode. With both DAO and ADO, you can
verify the edit status of the current record by using the EditMode property.

One difference between DAO and ADO is the behavior when updating a record and
then moving to another record without calling the Update method. With DAO, any
changes made to the current record are lost when moving to another record without
first calling Update. ADO automatically commits the changes to the current record
when moving to a new record. You can explicitly discard changes to the current record
with both DAO and ADO by using the CancelUpdate method.

Executing a Non-Parameterized Stored
Query

A non-parameterized stored query is an SQL statement that has been saved in the
database and does not require that additional variable information be specified in order
to execute. The following listings demonstrate how to execute such a query.

DAO
Sub DACExecut eQuery()

D mdb As DAQ. Dat abase
Dmrst As DAQO. Recor dset
Dmfld As DAQO Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Open the Recordset
Set rst = db. OpenRecordset ("Products Above Average Price"

dbOpenForwar dOnl y, dbReadOnl y)
" Display the records in the debug w ndow
Wil e Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld.vValue & ";";

Next

Debug. Print

rst. MoveNext
Wend

"Close the recordset
rst.Cl ose

End Sub

ADO
Sub ADOExecut eQuery()

D mcnn As New ADCDB. Connecti on
Dmrst As New ADCDB. Recor dset
Dmfld As ADOCDB. Fi el d

Open t he connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "
" Open the recordset
rst.Qpen "[Products Above Average Price]", cnn, & _

adQpenForwar dOnl y, adLockReadOnly, adCndStoredProc
" Display the records in the debug w ndow
While Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld.Value & ";";

Next

Debug. Pri nt

rst. MoveNext
Vend

"Cl ose the recordset
rst. Cl ose

End Sub

The code for executing a non-parameterized, row-returning query is almost identical.
With ADO, if the query name contains spaces you must use sqaure brackets ([1)
around the name.

Executing a Parameterized Stored Query

A parameterized stored query is an SQL statement that has been saved in the
database and requires that additional variable information be specified in order to
execute. The code below shows how to execute such a query.

DAO
Sub DACExecut ePar anQuery()

D m db As DAO. Dat abase
D m qdf As DAO. Quer yDef

D mrst As DAO. Recor dset
Dmfld As DAO. Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Get the QueryDef fromthe QueryDefs collection
Set gdf = db. QueryDefs("Sal es by Year")
' Specify the paraneter val ues
gdf . Paranmet ers("Forns! Sal es by Year Di al og! Begi nni ngbate") _
= #8/ 1/ 1993#
qdf . Paranet ers("Forns! Sal es by Year Di al og! Endi ngDate") = #8/31/1993#

" Open the Recordset
Set rst = qdf. OpenRecordset (dbOpenForwardOnly, dbReadOnly)
" Display the records in the debug w ndow
Wil e Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld.vValue & ";";

Next

Debug. Pri nt

rst. MoveNext
end

"Close the recordset
rst.Cl ose

End Sub

ADO

Sub ADOExecut ePar amuery()

End

Di mcnn As New ADODB. Connecti on
Di m cat As New ADOX. Cat al og
Dmcnd As ADODB. Conmand

D mrst As New ADODB. Recor dset
Dmfld As ADODB. Fi el d

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the catal og
cat. ActiveConnection = cnn

" Get the Command object fromthe Procedure
Set cnd = cat. Procedures("Sal es by Year").Comand
" Specify the paraneter val ues
cnd. Paranet ers("Forns! Sal es by Year D al og! Begi nni ngDate") _
= #8/ 1/ 1993#
crmd. Paranet ers("Forns! Sal es by Year Dial og! Endi ngDate") = #8/31/1993#

" Open the recordset
rst.Qpen cnd, , adOpenForwardOnly, adLockReadOnly, adCndStoredProc

" Display the records in the debug w ndow
Wil e Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld.VvValue & ";";

Next

Debug. Print

rst. MoveNext
Vend

"Cl ose the recordset
rst.Cl ose

Sub

Alternatively, the ADO example could be written more concisely by specifying the
parameter values using the Parameters parameter with the Command object's
Execute method. The following lines of code:

' Specify the paraneter val ues

cmd. Paranmeters("Forns! [Sal es by Year Dial og]! Begi nningDate") = &
#8/ 1/ 93#

cnd. Paraneters("Fornms! [Sal es by Year Dial og]! Endi ngDate") = #8/31/93#

" Open the recordset
rst.Open crmd, , adOQpenForwardOnly, adLockReadOnly

could be replaced by the single line:
" Execute the Conmand, passing in the values for the paraneters

Set rst = cnd. Execute(, Array(#8/1/93#, #8/31/93#))

In one more variation of the ADO code to execute a parameterized query, the example
could be rewritten to not use any ADOX code.

Sub ADOExecut ePar amuery?2()

Dimcnn As New ADCDB. Connecti on
Dmcnd As New ADODB. Conmand

D mrst As New ADODB. Recor dset
Dmfld As ADODB. Fi el d

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Create the commnd
Set cnd. Acti veConnection = cnn
cmd. CommandText = "[Sal es by Year]"

" Execute the Conmand, passing in the values for the paraneters
Set rst = cnd. Execute(, Array(#8/1/93#, #8/31/93#), adCrdStoredProc)

" Display the records in the debug w ndow
Wil e Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld.VvValue & ";";

Next

Debug. Pri nt

rst. MoveNext
Vend

"Cl ose the recordset
rst.Cl ose

End Sub

Executing Bulk Operations

The ADO Command object's Execute method can be used for row-returning queries,
as shown in the previous section, as well as for non row-returning queries—also known
as bulk operations. The following code examples demonstrate how to execute a bulk
operation in both DAO and ADO.

DAO
Sub DAOExecut eBul kOpQuery()

D mdb As DAQ. Dat abase

' Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Execute the query

db. Execute "Update Customers Set Country = 'United States’ " &
"WHERE Country = 'USA "

Debug. Print "Records Affected = " & db. RecordsAffected

" Close the database
db. d ose

End Sub

ADO
Sub ADOExecut eBul kOpQuery()

D mcnn As New ADQDB. Connecti on
Dimi Affected As | nt eger

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Execute the query

cnn. Execute "Update Custonmers Set Country = "United States’ " &
"WHERE Country = "USA' ", i Affected, adExecuteNoRecords

Debug. Print "Records Affected = " & i Affected

"Cl ose the connection
cnn. Cl ose

End Sub

Unlike DAO which has two methods for executing SQL statements, OpenRecordset
and Execute, ADO has a single method, Execute, that executes row-returning as well
as bulk operations. In the ADO example, the constant adExecuteNoRecords
indicates that the SQL statement is non row-returning. If this constant is omitted, the
ADO code will still execute successfully, but you will pay a performance penalty. When
adExecuteNoRecords is not specified, ADO will create a Recordset object as the
return value for the Execute method. Creating this object is unnecessary overhead if
the statement does not return records and should be avoided by specifying
adExecuteNoRecords when you know that the statement is non row-returning.

Creating and Viewing Database
Schema

The following code creates and opens a new Microsoft Jet database.
DAO

Sub DACCr eat eDat abase()
Di m db As DAQ. Dat abase
Set db = DBENngi ne. Cr eat eDat abase(" C:. \ new. ndb", dbLangGeneral)

End Sub

ADOX
Sub ADOCr eat eDat abase()

D m cat As New ADOX. Cat al og

cat.Create "Provider=M crosoft.Jet. OLEDB.4.0;" & _
"Data Source=C:\ new. ndb; "

End Sub

In the DAO code above, the Locale parameter is specified as dbLangGeneral. In the
ADOX code, locale is not explicitly specified. The default locale for the Jet Provider is
equivalent to dbLangGeneral. Use the ADO Locale Identifier property to specify a
different locale.

In DAO, CreateDatabase also can take a third Options parameter, specifying
information for encrytion and database version. For example, the following line is used
to create an encrypted, version 1.1 Microsoft Jet database:

Set db = DBENngi ne. Cr eat eDat abase(" C: \ new. ndb", dbLangGeneral,
dbEncrypt + dbVersionll)

In ADO, encryption and database version information is specified by provider-specific
properties. With the Jet Provider, use the Encrypt Database and Engine Type
properties, respectively. The following line of code specifies these values in the
connection string to create an encrypted, version 1.1 Microsoft Jet database:

cat.Create "Provider=Mcrosoft.Jet. OLEDB.4.0;" & _
"Data Source=C.\new. mdb;" & _

"Jet OLEDB: Encrypt Database=True;" & _
"Jet OLEDB: Engi ne Type=2;"

Both DAO and ADOX contain collections of objects that can be used to retrieve
information about the database's schema. Information about the schema can be
retrieved relatively easily by iterating through the objects in each of the collections.

The following code demonstrates how to print the name of every table in the database
by looping through the DAO TableDefs collection and the ADOX Tables collection.

DAO
Sub DAQLI st Tabl es()

D mdb As DAQ. Dat abase
D mtbl As DAQ. Tabl eDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

Loop through the tables in the database and print their name
For Each tbl In db. Tabl eDefs

Debug. Print tbl. Name
Next

End Sub

ADOX
Sub ADOLi st Tabl es()

D m cat As New ADOX. Cat al og
Di m t bl As ADOX. Tabl e

Open the catal og
cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=c:\nw nd. ndb; "

" Loop through the tables in the database and print their nane
For Each tbl In cat. Tables

If tbl.Type <> "VIEW Then Debug. Print tbl.Nane
Next

End Sub

With DAO, the TableDef object represents a table in the database and the TableDefs
collection contains a TableDef object for each table in the database. This is similar to

ADO, in which the Table object represents a table and the Tables collection contains

all the tables.

However, unlike DAO, the ADO Tables collection may contain Table objects that
aren't actual tables in your Microsoft Jet database. For example, row-returning, non-
parameterized Microsoft Jet queries (considered Views in ADQO) are also included in
the Tables collection. To determine whether or not the Table object represents a
table in the database, use the Type property. The following table lists the possible
values for the Type property when using ADO with the Jet Provider.

Type Description

ACCESS TABLE The Table is an Access system table.

LINK The Table is a linked table from a non-ODBC data source.
PASS-THROUGH The Table is a linked table from an ODBC data source.
SYSTEM TABLE The Table is a Microsoft Jet system table.

TABLE The Table is a table.

VIEW The Table is a row-returning, non-parameterized query.

In addition to being able to retrieve schema information using collections in ADOX, you
can use the ADO OpenSchema method to return a Recordset containing information
about the tables in the database. See "Appendix C: Schema Rowsets" for more
information about the schema rowsets that are available in ADO when using the Jet
Provider.

In general, it is faster to use the OpenSchema method rather than looping through
the collection, because ADOX must incur the overhead of creating objects for each
element in the collection. The following code demonstrates how to use the
OpenSchema method to print the same information as the previous DAO and ADOX
examples.

Sub Li st Tabl es2()

D mcnn As New ADCDB. Connecti on
D mrst As ADCODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the tables schema rowset
Set rst = cnn. OpenSchena(adSchemaTabl es)

" Loop through the results and print the names in the debug w ndow
While Not rst.ECF
If rst.Fields("TABLE _TYPE") <> "VIEW Then _
Debug. Print rst. Fields("TABLE_NAME")
rst. MoveNext
Wend

End Sub

Microsoft Jet databases can contain two types of tables. The first type is a local table,
in which the definition and data are stored within the database. The second type is a
linked table in which the table resides in an external database, but a link along with a
copy of the table's definition is stored in the database.

Creating Local Tables

The following example creates a new local table named "Contacts."
DAO

Sub DACQOCr eat eTabl e()

Di m db As DAQ. Dat abase
D mtbl As DAQ. Tabl eDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Create a new Tabl eDef object.
Set tbl = db. CreateTabl eDef (" Cont acts")

Wth tbl
" Create fields and append themto the new Tabl eDef object.
" This nmust be done before appendi ng the Tabl eDef object to
" the Tabl eDefs coll ection of the Database.
. Fi el ds. Append . Creat eFi el d(" Cont act Nane", dbText)
.Fields. Append . CreateField("ContactTitle", dbText)

. Fi el ds. Append . Creat eFi el d("Phone", dbText)
. Fi el ds. Append . Creat eFi el d(" Notes", dbMenp)
.Fields("Notes"). Required = Fal se

End Wth

' Add the new table to the database.
db. Tabl eDef s. Append t bl

db. d ose

End Sub

ADOX
Sub ADOCr eat eTabl e()

D m cat As New ADOX. Cat al og
D mthbl As New ADOX. Tabl e

" Open the catal og

cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _

"Dat a Sour ce=C:\ nw nd. ndb; "

" Create a new Tabl e object.
Wth tbl
. Name = "Cont act s"
" Create fields and append themto the new Tabl e
" object. This nmust be done before appending the
" Table object to the Tables collection of the
' Catal og.
. Col ums. Append " Cont act Nane", adVarWChar
. Col ums. Append "ContactTitle", adVarWChar
. Col ums. Append "Phone", adVarWChar
. Col ums. Append "Not es", adLongVar WChar
. Colums("Notes").Attributes = adCol Nul | abl e
End Wth

' Add the new table to the database.
cat . Tabl es. Append t bl

Set cat = Not hi ng

End Sub

The process for creating a table using DAO or ADOX is the same. First, create the
object (TableDef or Table), append the columns (Field or Column objects), and
finally append the table to the collection. Though the process is the same, the syntax
is slightly different.

With ADOX, it is not necessary to use a "create" method to create the column before
appending it to the collection. The Append method can be used to both create and
append the column.

You'll also notice the data type names for the columns are different between DAO and
ADOX. The following table shows how the DAO data types that apply to Microsoft Jet
databases map to the ADO data types.

DAO data type ADO data type
dbBinary adBinary
dbBoolean adBoolean
dbByte adUnsignedTinyInt
dbCurrency adCurrency
dbDate adDate
dbDecimal adNumeric
dbDouble adDouble
dbGUID adGUID
dblInteger adSmalllnt
dbLong adInteger
dbLongBinary adLongVarBinary
dbMemo adLongVarWChar
dbSingle adSingle

dbText adVarWChar

Though not shown in this example, there are a number of other attributes of a table or
column that you can set when creating the table or column, using the DAO Attributes
property. The table below shows how these attributes map to ADO and Jet Provider-
specific properties.

DAO TableDef Value ADOX Table Property Value

Property

Attributes dbAttachExclusive Jet OLEDB:Exclusive True
Link

Attributes dbAttachSavePWD Jet OLEDB:Cache Link True
Name/Password

Attributes dbAttachedTable Type "LINK"

Attributes dbAttachedODBC Type "PASS-THROUGH"

DAO Field Value ADOX Column Value

Property Property

Attributes dbAutoIncrField AutoIncrement True
Attributes dbFixedField ColumnAttributes adColFixed
Attributes dbHyperlinkField Jet OLEDB:Hyperlink True
Attributes dbSystemField

Attributes dbUpdatableField

Attributes dbVariableField ColumnAttributes Not adColFixed

Creating a Linked Table

Linking (also known as attaching) a table from an external database allows you to read
data, update and add data (in most cases), and create queries using the table in the
same way as you would with a table native to the database.

With Microsoft Jet you can create links to Microsoft Jet data, ISAM data (Text, FoxPro,
dBASE, etc.), and ODBC data. Tables that are attached through ODBC are sometimes
called pass-through tables.

The following listings demonstrate how to create a table that is linked to a table in
another Microsoft Jet database.

DAO
Sub DACCr eat eAt t achedJet Tabl e()

D mdb As DAQ. Dat abase
D mtbl As DAQ. Tabl eDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

Create a new Tabl eDef object.
Set tbl = db. CreateTabl eDef (" Aut hors")

Set the properties to create the |ink
t bl . Connect = "; DATABASE=C: \ pubs. ndb; pwd=password; "

t bl . Sour ceTabl eNane = "aut hors"

Add the new table to the database.
db. Tabl eDef s. Append t bl

db. d ose

End Sub

ADOX
Sub ADCOCr eat eAt t achedJet Tabl e()

D m cat As New ADOX. Cat al og
D mthbl As New ADOX. Tabl e

Open the catal og
cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=c:\nw nd. ndb; "

Set the nane and target catalog for the table
tbl . Nane = "Aut hors"
Set tbl. Parent Catal og = cat

Set the properties to create the link

tbl.Properties("Jet OLEDB: Create Link") = True

tbl.Properties("Jet OLEDB: Link Datasource") = "C:\pubs. ndb"
tbl.Properties("Jet OLEDB: Link Provider String") = "; pwd=password"
tbl . Properties("Jet OLEDB: Renote Table Nane") = "authors"

Append the table to the collection
cat . Tabl es. Append t bl

Set cat = Nothi ng

End Sub

To create a linked table, you must specify the external data source and the name of
the external table. With DAO, the Connect and SourceTableName properties are
used to specify this information. With ADOX, several Microsoft Jet provider-specific
properties are used to create the link. When referencing the Table object's Properties
collection prior to appending the Table to the Tables collection, you must first set the
ParentCatalog property. This is necessary so ADOX knows from which OLE DB
provider to receive the property information. See the section, "Appendix B: Properties
Reference" for more information about the properties that are available in the Table
object's Properties collection when using the Jet Provider.

With ADOX, the Jet OLEDB:Link Datasource property contains only the file and
pathname for the database. It does not contain the "database=;" prefix nor is it used
to specify the database password or other connection options as the Connect property
does in DAO. To specify other connection options in ADOX code, use the Jet
OLEDB:Link Provider String property. You do not need to set this property unless
you need to set extra connection options. In the example above, if the pubs.mdb was
not secured with a database password, you could omit the line of code that sets the
Jet OLEDB:Link Provider String property.

Notice that when creating an attached table using both DAO and ADOX it is not
necessary to create columns on the table. The Microsoft Jet database engine will

automatically create the columns based on the definition of the table in the external
data source.

This next example shows how to create a table that is linked to a table in an ODBC
data source such as a Microsoft SQL Server database.

DAO
Sub DAQCr eat eAt t achedODBCTabl e()

D mdb As DAQ. Dat abase
D mtbl As DAQ. Tabl eDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Create a new Tabl eDef object.
Set tbl = db. CreateTabl eDef ("Titl es")

' Set the properties to create the link
t bl . Connect = "ODBC, DSN=al yssal; Ul D=sa; PWD=; "
tbl . SourceTabl eName = "titles"”

" Add the new table to the database.
db. Tabl eDef s. Append t bl

db. d ose

End Sub

ADOX
Sub ADOCr eat eAt t achedODBCTabl e()

D m cat As New ADOX. Cat al og
Di m t bl As New ADOX. Tabl e

" Open the catal og
cat.Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

" Set the nanme and target catalog for the table
tbl.Name = "Titles”

Set tbl.ParentCatal og = cat

" Set the properties to create the link

tbl . Properties("Jet OLEDB: Create Link") = True

tbl . Properties("Jet OLEDB: Link Provider String") =
" ODBC; DSN=al yssal; U D=sa; PWD=; "

tbl.Properties("Jet OLEDB: Renote Table Nane") = "titles"

Append the table to the collection
cat . Tabl es. Append t bl

Set cat = Not hi ng

End Sub

Unlike DAO, which has a single Connect property, ADOX with the Jet Provider has a
separate property that specifies the connection string for tables attached through
ODBC. When creating tables attached through ODBC you may want to indicate that the
password should be saved as part of the connection string (it is not saved by default).
With ADOX, use the Jet OLEDB:Cache Link Name/Password property to indicate
that the password should be cached. This is equivalent to setting the
dbAttachSavePWD flag in the Table object's Attributes property using DAO.

Modifying an Existing Table

Once a table is created, you may want to modify it to add or remove columns, change
the validation rule or refresh the link for a linked table.

The following listings demonstrate how to add a new auto-increment column to an
existing table.

DAO
Sub DAQCr eat eAut ol ncr Col um()

D mdb As DAQ. Dat abase
D mtbl As DAQ. Tabl eDef
Dmfld As DAQO Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

' Get the Contacts table

Set tbl = db. Tabl eDef s(" Cont acts")
" Create the new auto increment colum

Set fld = tbl.CreateFiel d("Contactld", dbLong)
fld. Attri butes = dbAutol ncrField

" Add the new table to the database.

tbl . Fi el ds. Append fld
db. d ose

End Sub

ADOX
Sub ADOCr eat eAut ol ncr Col urm()

D m cat As New ADOX. Cat al og
Di m col As New ADOX. Col um

" Open the catal og
cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=C:\nw nd. ndb; "

" Create the new auto increment colum
Wth col

. Nane = "Contact|d"

. Type = adl nt eger

Set . ParentCatal og = cat

. Properties("Autolncrenent") = True
End Wth

" Append the colunm to the table
cat. Tabl es(" Contacts"). Col ums. Append col

Set cat = Not hi ng

End Sub

Notice that in the ADOX example, the ParentCatalog property must be set in order to
access properties in the Column object's Property collection before the Column is
appended to the table.

The next example shows how to update an existing linked table to refresh the link.
This involves updating the connection string for the table and then resetting the Jet
OLEDB:CreatelLink property to tell Microsoft Jet to re-establish the link.

DAO
Sub DAORef r eshLi nks()

Di m db As DAQ. Dat abase
Di mt bl As DAQ. Tabl eDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C:. \ orders. ndb")

For Each tbl In db. Tabl eDefs

Check to nmake sure table is a |inked table.
If tbl.Attributes And dbAttachedTabl e Then

t bl . Connect = "; DATABASE=C: \ nwi nd. ndb"
t bl . Ref reshLi nk
End | f
Next
End Sub
ADOX

Sub RefreshLi nks()

D m cat As New ADOX. Cat al og

Di m t bl As ADOX. Tabl e

" Open the catal og

cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=C:\nw nd. ndb; "

For Each tbl In cat. Tables
" Check to nake sure table is a |linked table.

If tbl.Type = "LINK" Then
tbl. Properties("Jet OLEDB:Link Datasource") = "C: \nw nd. mdb"
tbl.Properties("Jet OLEDB: Create Link") = True

End | f

Next

End Sub

Indexes on a column or columns in a table specify the order of records accessed from
database tables and whether or not duplicate records are accepted. The following code
creates an index on the Country field of the Employees table.

DAO
Sub DAQOCr eat el ndex()

D mdb As DAQ. Dat abase

D mtbl As DAQ. Tabl eDef
D midx As DAQO. | ndex

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

Set tbl = db. Tabl eDef s(" Enpl oyees")
" Create Index object append Field object to the Index object.
Set idx = tbl.Createl ndex("Countryl ndex")

i dx. Fi el ds. Append i dx. Creat eFi el d(" Country")

" Append the Index object to the Indexes collection of the Tabl eDef.
t bl . I ndexes. Append i dx

db. d ose

End Sub

ADOX
Sub ADOCr eat el ndex()

D m cat As New ADOX. Cat al og
Di mt bl As ADOX. Tabl e
Dimidx As New ADOX. | ndex

" Open the catal og
cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

Set tbl = cat. Tabl es("Enpl oyees")
" Create Index object append table colums to it.
i dx. Name = " Count ryl ndex"

i dx. Col ums. Append " Country"

" Allow Null values to be added in the index field
i dx.lndexNulls = adl ndexNul | sAl | ow

" Append the I ndex object to the Indexes collection of Table
t bl . 1 ndexes. Append i dx

Set cat = Nothi ng

End Sub

The process for creating an index is the same in ADO and DAO. Create the index,
append columns to the index, and then append the index to the table. However, there
are some differences in behavior between the Index objects in these two models. DAO
has two properties, Required and IgnoreNulls, that together determine whether or
not Null values can be inserted for fields in the index and whether or not index entries
will be created when some of the fields in a multi-column index contain Null. By
default, both of these properties are False, indicating that Null values are allowed in
the index and that an index entry will be added. This differs from ADO, which has a
single property, IndexNulls for this purpose. By default, the IndexNulls property is
adIndexNullsDisallow that indicates that Null values are not allowed in the index
and that no index entry will be added if a field in the index contains Null.

The table below shows the mapping between the DAO Required and IgnoreNulls
properties to the ADOX IndexNulls property.

DAO DAO ADOX IndexNulls Description
Required IgnoreNulls

True False adIndexNullsDisallow A Null value isn't allowed in the
index field; no index entry
added.

False True adIndexNullsIgnore A Null value is allowed in the
index field; no index entry
added.

False False adIndexNullsAllow A Null value is allowed in the
index field; index entry added.

Note that ADO defines an additional value for the IndexNulls property,
adIndexNullsIgnoreAny, that is not listed in the table above. The Jet Provider does
not support this type of index. Setting IgnoreNulls to adIndexNullsIgnoreAny
when using the Jet Provider will result in a run-time error. The purpose of
adIndexNullsIgnoreAny, if it was to be supported by a provider, is to ignore an
entry if any column of a multi-column index contains a Null value.

Creating a Primary Key

A table often has a column or combination of columns whose values uniquely identify a
row in a table. This column (or combination of columns) is called the primary key of
the table. When you define a primary key, the Microsoft Jet database engine will
create an index to enforce the uniqueness of the key.

Using the Contacts table created in previous examples, the following listings
demonstrate how to make the Contactld column the primary key.

DAO
Sub DAQOCr eat ePri mar yKey()

D mdb As DAQ. Dat abase
D mtbl As DAQ. Tabl eDef
D midx As DAQO. | ndex

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

Set tbl = db. Tabl eDef s(" Cont acts")

" Create the Primary Key and append table columms to it.
Set idx = tbl.Createl ndex("PrimaryKey")

idx.Primary = True

i dx. Fi el ds. Append i dx. Creat eFi el d("Contactld")

" Append the Index object to the Indexes collection of the Tabl eDef.
t bl . 1 ndexes. Append i dx

db. d ose

End Sub

ADOX
Sub ADOCr eat ePri mar yKey()

D m cat As New ADOX. Cat al og
D mthbl As ADOX. Tabl e
D m pk As New ADOX. Key

" Open the catal og
cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

Set tbl = cat. Tabl es("Contacts")

" Create the Primary Key and append table columms to it.
pk. Nanme = "Pri naryKey"

pk. Type = adKeyPri mary

pk. Col utms. Append " Cont act | d”

" Append the Key object to the Keys collection of Table
t bl . Keys. Append pk

Set cat = Nothi ng

End Sub

With DAO, the Index object is used to create primary keys. The key is created much
like any other index except that the Primary property is set to True. ADO, however,
has a Key object that is used to create new keys. The steps in creating a key are
similar to creating an index. However, when creating a Key, you must specify the type
of Key you want to create. In this case, the key type is adKeyPrimary which
indicates that you want to create a primary key.

Alternatively, the ADOX code to create and append the key could have been written in
a single line of code. The following code:

" Create the Primary Key and append table columms to it.

pk. Nanme = "Pri nmaryKey"

pk. Type = adKeyPri mary

pk. Col utms. Append " Cont act | d”

" Append the Key object to the Keys collection of Table
t bl . Keys. Append pk

is equivalent to:

" Append the Key object to the Keys collection of Table
t bl . Keys. Append "Pri maryKey", adKeyPrimary, "Contactld"

Creating One-to-Many Relationships
(Foreign Keys)

One-to-many relationships between tables (where the primary key value in the
primary table may appear in multiple rows in the foreign table) are established by
creating foreign keys. A foreign key is a column or combination of columns whose
values match the primary key of another table. Unlike a primary key, a foreign key
does not have to be unique.

DAO
Sub DAQOCr eat eFor ei gnKey/()

D mdb As DAQ. Dat abase
Dimrel As DAO. Rel ation
Dmfld As DAQO Field

" Open the database
Set db = DBEngi ne. OQpenDat abase(" C: \ nwi nd. ndb")

" This key already exists in the Northw nd database.

For the purposes of this exanple, we're going to

" delete it and then recreate it
db. Rel ati ons. Del et e "Cat egori esProducts”

" Create the relation
Set rel = db. CreateRel ation()

rel . Name = "Categori esProducts"
rel.Table = "Categories"
rel . ForeignTabl e = "Products”

" Create the field the tables are related on

Set fld = rel.CreateFiel d("Categoryld")

" Set ForeignNanme property of the field to the nane of
" the corresponding field in the primary table

fld. Forei gnNane = "Cat egoryld"

rel.Fields. Append fld

" Append the relation to the collection
db. Rel ati ons. Append r el

End Sub

ADO
Sub ADOCr eat eFor ei gnKey/()

D m cat As New ADOX. Cat al og
D mthbl As ADOX. Tabl e
Dimfk As New ADOX. Key

" Open the catal og

cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _

"Dat a Sour ce=C:\ nw nd. ndb; "

" Get the table for the foreign side of the relationship
Set tbl = cat. Tabl es("Products")

" This key already exists in the Northw nd database
" For the purposes of this exanple, we’'re going to
" delete it and then recreate it

t bl . Keys. Del et e " Cat egori esProduct s"

" Create the Foreign Key
fk. Name = " Cat egori esProducts”

fk. Type = adKeyForei gn

fk. Rel at edTabl e = "Cat egori es”
" Append colum(s) in the foreign table to it

fk. Col umms. Append " Cat egoryl d"

" Set Rel atedCol unm property to the nanme of the corresponding
" colum in the primary table

fk. Col ums(" Cat egoryl d"). Rel at edCol utm = " Cat egoryl d"

" Append the Key object to the Keys collection of Table
t bl . Keys. Append fk

Set cat = Not hi ng

End Sub

Alternatively, the ADOX code to create and append the key could have been written in
a single line of code. The following code:

Create the Forei gn Key

fk. Name = " Cat egori esProducts”
fk. Type = adKeyForei gn

fk. Rel at edTabl e = "Categori es"
" Append colum(s) in the foreign table to it

f k. Col ums. Append " Cat egoryl d"

" Set Rel at edCol utm property to the nane of the correspondi ng
" colum in the primary table

fk. Col umms(" Cat egoryl d") . Rel at edCol um = " Cat egoryl d"

" Append the Key object to the Keys collection of Table
t bl . Keys. Append fk

is equivalent to:

t bl . Keys. Append "Cat egori esProduct s", adKeyForeign, "Categoryld",
"Cat egori es", "Categoryld"

Enforcing Referential Integrity

Referential integrity preserves the defined relationships between tables when records
are added, updated, or deleted. Maintaining referential integrity within your database
requires that there be no references to nonexistent values, and that if a key value
changes, all references to it change consistently throughout the database.

When you enforce referential integrity users are prevented from adding new records to
a related table when there is no associated record in the primary table, changing
primary key values that would result in "orphaned" records in the related table, or
deleting records in the primary table when there are associated records in the related
table.

By default, Microsoft Jet enforces relationships created by DAO or ADOX. A trappable
error will occur if you make changes that violate referential integrity. When defining a
new relationship, you can also specify that Microsoft Jet should cascade updates or
deletes. With cascading updates, when a change is made to the primary key in a
record in the primary table, Microsoft Jet will automatically update the foreign key in
all related records in the related foreign table or tables. Similarly with cascading
deletes, when a record is deleted from the primary table, Microsoft Jet will
automatically delete all related records in the related foreign table or tables.

In the following example, the code from the preceding section is modified to create a
foreign key that supports cascading updates and deletes.

DAO
Sub DAQOCr eat eFor ei gnKeyCascade()

D mdb As DAQ. Dat abase
Dimrel As DAO. Rel ation
Dmfld As DAQO Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" This key already exists in the Northw nd database.
" For the purposes of this exanple, we're going to

" delete it and then recreate it

db. Rel ati ons. Del ete "Cat egori esProducts”

" Create the relation
Set rel = db. CreateRel ation()

rel . Name = "Categori esProducts"
rel . Table = "Categories"
rel . ForeignTabl e = "Products”

" Specify cascadi ng updates and del etes
rel . Attri butes = dbRel ati onUpdat eCascade Or dbRel ati onDel et eCascade

" Create the field the tables are related on

Set fld = rel.CreateFiel d("Categoryld")

" Set ForeignNanme property of the field to the name of
" the corresponding field in the primary table

fld. Forei gnNane = "Categoryld"

rel.Fields. Append fld

Append the relation to the collection
db. Rel ati ons. Append rel

End Sub

ADOX
Sub ADOCr eat eFor ei gnKeyCascade()

D m cat As New ADOX. Cat al og
Di m t bl As ADOX. Tabl e
Dm fk As New ADOX. Key

Open the catal og
cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

" Get the table for the foreign side of the relationship
Set tbl = cat. Tabl es("Products")

" This key already exists in the Northw nd database.

For the purposes of this exanple, we're going to
" delete it and then recreate it

t bl . Keys. Del et e " Cat egori esProduct s"
" Create the Foreign Key

fk. Name = " Cat egori esProducts”
fk. Type = adKeyForeign

fk. Rel at edTabl e = "Cat egori es"
" Specify cascadi ng updates and del etes
fk. Updat eRul e = adRI Cascade

fk.Del eteRul e = adRl Cascade

" Append colum(s) in the foreign table to it

f k. Col ums. Append " Cat egoryl d"

" Set Rel at edCol utm property to the nane of the correspondi ng
" colum in the primary table

fk. Col umms(" Cat egoryl d") . Rel at edCol um = " Cat egoryl d"

" Append the Key object to the Keys collection of Table

t bl . Keys. Append fk
Set cat = Not hi ng

End Sub

The following table shows how the values for the DAO Attributes property of a
Relation object map to properties of the ADOX Key object.

Note The following values for the DAO Attributes property of a Relation object
have no corresponding properties in ADOX: dbRelationDontEnforce,
dbRelationInherited, dbRelationLeft, dbRelationRight.

DAO Relation Value ADOX Key Object Value
Object Property Property

Attributes dbRelationUnique Type adKeyUnique
Attributes dbRelationUpdateCascade UpdateRule adRICascade
Attributes dbRelationDeleteCascade DeleteRule adRICascade

As discussed in the section, "Executing Queries" the ADO Command object is similar
to the DAO QueryDef object in that it specifies an SQL string and parameters and
executes the query. However, unlike the DAO QueryDef object, the ADO Command
object cannot be used directly to persist a query. By specifying a name for the
QueryDef when it is created, the DAO QueryDef is automatically appended to the
QueryDefs collection and persisted in the database. This differs from ADO in which all
Command objects are temporary queries. You must explicitly append the Command
to the ADOX Procedures or Views collection in order to persist it in the database.

The Jet Provider defines Microsoft Jet queries as Views if the query is a row-returning,
non-parameterized query. The provider defines a procedure as either a non row-
returning query (a bulk operation) or a parameterized row-returning query.

Creating a Stored Query

The following listings demonstrate how to create a row returning, non-parameterized
query.

DAO
Sub DAQOCr eat eQuery()

D m db As DAOQ. Dat abase
Dmaqry As DAO. Quer yDef

" Open the dat abase
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

"Create query

Set gry = db. CreateQueryDef ("All Cat egori es",
"SELECT * FROM Cat egori es")

db. d ose

End Sub

ADOX
Sub ADOCr eat eQuery()

D m cat As New ADOX. Cat al og
Dimcnd As New ADODB. Conmand

" Open the catal og
cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=C:\nw nd. ndb; "

" Create the query
cmd. CommandText = "Sel ect * FROM Cat egori es"
cat. Vi ews. Append "Al | Cat egori es", cnd

Set cat = Not hi ng

End Sub

In this example, because the SQL statement is a non-parameterized, row-returning
query, the ADO Command object is appended to the ADOX Views collection. Note,
that when using the Jet Provider, it is possible to append a Command object to either
the Views or Procedures collection regardless of the type of query that is being
created. However, if a query such as the one in this example is appended to the
Procedures collection, then the Procedures and Views collections are refreshed,
you'll notice that the query is no longer in the Procedures collection, but is now in the
Views collection.

Likewise, you can append a parameterized query, or a non row-returning bulk
operation query to either the Views or Procedures collection. However, ADOX will
actually store these types of queries in the Procedures collection. If you append to
the Views collection, then refresh both the Views and Procedures collections, you'll
find that the newly appended query is now in the Procedures collection.

Creating a Parameterized Stored Query

The following listings demonstrate how to create a parameterized query and save it in
the database.

DAO
Sub DAOCr eat ePar anet eri zedQuer y()

Di m db As DAQ. Dat abase
Dmaqry As DAO. Quer yDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

"Create query

Set gry = db. Creat eQueryDef (" Enpl oyees by Regi on",
"Paraneters [prnmRegion] Text(255);" & _
"Sel ect * from Enpl oyees where Region = [prnRegion]")

db. d ose

End Sub

ADOX
Sub ADOCr eat ePar anet eri zedQuery()

D m cat As New ADOX. Cat al og
Dmcnd As New ADODB. Conmand

" Open the catal og
cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=C: \ nw nd. ndb;"

"Create the Conmmand
cnd. CommandText = "Paraneters [prnRegi on] Text(255);" & _
"Sel ect * from Enpl oyees where Region = [prnRegi on]"

"Create the Procedure
cat . Procedures. Append "Enpl oyees by Regi on", cnd

Set cat = Not hi ng

End Sub

The code for creating a parameterized query is very similar using DAO and ADOX.
Note, though that although the ADO Command object allows you to create
parameters using the CreateParameter method, this information will not be saved
when creating or updating a Procedure. You must specify the parameters as part of
the SQL string.

Also note that Microsoft Jet will interpret the SQL statement differently when a query is
created with ADOX and the Jet Provider rather than DAO. The Jet Provider always sets

a Microsoft Jet database engine option for ANSI compliance. This may cause
differences in behavior between DAO and ADO when creating or executing queries. For
example, if the SQL statement in the code above had been written as follows:

"Paraneters [prmRegion] Text;" & _
"Sel ect * from Enpl oyees where Regi on = [prnRegi on]"

omitting the (255) after the Text keyword, the parameter would be created as a text
field (dbText, adVarWChar) when using DAO, but as a memo field (dbMemo,
adLongVarWcChar) when using ADO.

Further, some SQL statements that execute when using DAO will fail to execute when
using ADO due to additional reserved words. For a list of reserved words, see
"Appendix D: Microsoft Jet 4.0 ANSI Reserved Words."

Modifying a Stored Query
The following listings demonstrate how to modify an existing query.
DAO

Sub DAOWbdi fyQuery()

D m db As DAOQ. Dat abase
Dmaqry As DAO. Quer yDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

Get the query
Set gry = db. QueryDef s("Enpl oyees by Regi on")

Update the SQ. and save the updated query
gry. SQ. = "Paraneters [prnRegion] Text(255);" & _
"Sel ect * from Enpl oyees where Regi on = [prnmRegi on] ORDER BY
CGty"

db. d ose

End Sub

ADO
Sub ADOVbdi fyQuery()

D m cat As New ADOX. Cat al og
Dmcnd As ADODB. Conmand

Open the catal og

cat. Acti veConnection = "Provi der=M crosoft.Jet. OLEDB. 4.0;" &
"Dat a Sour ce=C:.\ nwi nd. ndb; "

" Get the query

Set cnd = cat. Procedures("Enpl oyees by Regi on"). Command

" Update the SQ
cnd. CommandText = "Paraneters [prnRegi on] Text(255);" & _
"Sel ect * from Enpl oyees where Regi on = [prnRegi on] ORDER BY
Cty"

' Save the updated query
Set cat. Procedures("Enpl oyees by Region"). Conmand = cnd

Set cat = Not hi ng

End Sub

In the ADO code, setting the Procedure object's Command property to the modified
Command object saves the changes. If this last step were not included, the changes
would not have been persisted to the database. This difference results from the fact
that ADO Command objects are designed as temporary queries while DAO QueryDef
objects are designed as saved queries. You need to be aware of this when working
with Commands, Procedures, and Views. You may think that the following ADO
code examples are equivalent:

Set cnd = cat. Procedures("Enpl oyees by Region"). Conmand
cnd. CommandText = "Paraneters [prnRegion] Text;" & _
"Sel ect * from Enpl oyees where Regi on = [prnRegi on] ORDER BY
Cty"

Set cat. Procedures("Enpl oyees by Regi on"). Comand cmd

and

cat . Procedures("Enpl oyees by Regi on"). ConmandText
"Paraneters [prnRegion] Text;" & _
"Sel ect * from Enpl oyees where Regi on = [prnmRegi on] ORDER BY City"

However, they are not. Both will compile, but the second piece of code will not actually
update the query in the database. In the second example, ADOX will create a tear-off
command object and hand it back to Visual Basic for Applications. Visual Basic for
Applications will then ask ADOX to update the CommandText property, which it does.
Finally, Visual Basic for Applications moves to execute the next line of code and the
Command object is lost. ADOX is never asked to update the Procedure with the
changes to the modified Command object.

Creating an SQL Pass-Through Query

SQL pass-through queries are SQL statements that are sent directly to the database
server without interpretation by the Microsoft Jet database engine. When creating an
SQL pass-through query, you must specify the SQL statement to execute as well as an
ODBC connection string.

With DAO, pass-through queries provide a means of improving performance when
accessing external ODBC data. With ADO, it is not necessary to create SQL pass-
through queries in your Microsoft Jet database in order to have good performance
when accessing external data. With ADO, you can use the Microsoft OLE DB Provider
for SQL Server to directly access SQL Server without the overhead of Microsoft Jet or
ODBC. You can also use the Microsoft OLE DB Provider for ODBC to access data in any
ODBC data source.

While it is no longer necessary to create SQL pass-through queries in your Microsoft
Jet database, it is still possible to do so using ADOX and the Jet Provider. The following
code demonstrates how to create an SQL pass-through query.

DAO
Sub DAQOCr eat eSQ.PassThr ough()

Di m db As DAQ. Dat abase
Dmaqry As DAO. Quer yDef

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

"Create query

Set gry = db. Creat eQueryDef (" Busi ness Books",
"Select * FromTitles where Type = ’business’")

gry. Connect = " ODBC; DSN=al yssal; Ul D=sa; P\D=; "

gry. ReturnsRecords = True

db. d ose

End Sub

ADOX
Sub ADOCr eat eSQ.PassThr ough()

D m cat As New ADOX. Cat al og

D mcnd As New ADODB. Conmand

" Open the catal og

cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

"Create the Command

Set cnd. Acti veConnection = cat. ActiveConnecti on

cnd. CommandText = "Select * From Titles where Type = 'busi ness

cnd. Properties("Jet OLEDB: ODBC Pass- Through Statenment") = True

cmd. Properties("Jet OLEDB: Pass Through Query Connect String") =
" ODBC, DSN=al yssal; dat abase=pubs; Ul D=sa; PW\D=; "

"Create the Procedure
cat . Procedur es. Append "Busi ness Books", cnd

Set cat = Nothi ng

End Sub

Security

Microsoft Jet databases can be secured in one of two ways: share-level security or
user-level security. For share-level security, the database is secured with a password.
Anyone attempting to open the database must specify the correct database password.
For user-level security, each user is given a user name and password to open the
database.

The first step in securing a Microsoft Jet database is to change the password for the
Admin user, if using user-level security, or changing the database password if using
share-level security. When changing a password for a user or database, you must

supply both the existing and new passwords. When changing the database or Admin
user's password for the first time, use an empty string ("") as the existing password.

The following code shows how to enable user level security by setting the password for
the Admin user to "password".

DAO
Sub DACChangePasswor d()

D m wks As Wrkspace
Di m usr As DAO. User

Open the workspace, specifying the system database to use

DBENngi ne. SystenDB = "C:. \ sysdb. mdw"

Set wks = DBEngi ne. Cr eat eWor kspace("", "Adnmin", "")
' Change the password for the user Adm n

wks. User s(" Adnmi n"). NewPassword "", "password"

End Sub

ADOX
Sub ADCChangePasswor d()

D m cat As New ADOX. Cat al og
" Open the catal og, specifying the system database to use
cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _

"Dat a Source=C:\ nwi nd. mdb; Jet OLEDB: Syst em dat abase=C: \ sysdb. mdw"
' Change the password for the user Adm n
cat. Users("Adm n"). ChangePassword "", "password"

End Sub

DAO and ADOX both have a method on the User object to change the user's
password. The method takes the user's current password and the new password as
parameters. In DAO this method is called NewPassword while in ADOX it is called
ChangePassword.

Note The Jet Provider will not error on the line of code that opens the catalog if
the system database specified is incorrect. However, it will error when attempting
to change the password or perform any other security related operations with the
following error if the system database was not correctly specified: "The operation
requested by the application is not supported by the provider."

The following code shows how to change the database password for enabling security
at the share level.

DAO
Sub DACChangeDat abasePasswor d()

" Make sure there isn't already a file with the
name of the conpacted dat abase.
If Dir("c:\newnw nd. ndb") <> "" Then _

Kill "c:\newnw nd. ndb"

Basi ¢ conpact - creating new database naned newnw nd

DBEngi ne. Conpact Dat abase "C:.\ nwi nd. ndb", "C:\newnw nd. ndb",
, » ", pwd=password; "

" Delete the original database

Kill "c:\nw nd. mdb"

Renane the file back to the original nane

Name "c:\newnw nd. ndb" As "c:\nw nd. ndb"

End Sub

JRO
Sub JROChangeDat abasePasswor d()

Dmije As New JRO Jet Engi ne

" Make sure there isn't already a file with the
" nanme of the conpacted database.
If Dir("c:\newnw nd. ndb") <> "" Then _

Kill "c:\newnw nd. ndb"

" Conpact the database specifying the new dat abase password
j e. Conpact Dat abase "Data Source=C.\ nwi nd. mdb; ",

"Dat a Source=C.\ newnw nd. ndb; " & _

"Jet OLEDB: Dat abase Passwor d=password"

" Delete the original database
Kill "c:\nw nd. ndb"

" Rename the file back to the original nane
Name "c:\newnw nd. mdb" As "c:\nw nd. ndb"

End Sub

Note JRO, not ADOX, is used to change a database password at share level.

Both DAO and JRO allow you to change the database password when compacting the
database. The syntax is slightly different: in DAO, specify ";pwd=password;" in the
Password parameter of CompactDatabase. In JRO, specify the provider-specific "Jet
OLEDB:Database Password=password" in the destination connection parameter of
CompactDatabase.

Alternatively, the DAO code could be rewritten to use the NewPassword method of
the Database object.

Sub DAOChangeDat abasePasswor d2()
D m db As DAO. Dat abase
Set db = DBENngi ne. OpenDat abase(" C:\ nwi nd. ndb", True)

db. NewPassword "", "password"
db. d ose

End Sub

A similar mechanism is not currently available in JRO or ADOX. You must use the
CompactDatabase method in order to change the database password.

A User object represents a user account that has specific access permissions while a
Group object represents a group of user accounts that have common access
permissions. Creating users and groups allows you to easily control and maintain
users' access to the database and objects within the database.

The following code example shows how to create a new user.
DAO

Sub DAQCr eat eUser ()
D m wks As DAO. Wor kspace

" Open a workspace
DBEngi ne. SystenDB = "c: \sysdb. mdw'
Set wks = DBEngi ne. Cr eat eWor kspace("", "Admi n", "password")

" Create the user and append it to the Users collection
wks. Users. Append wks. Creat eUser (" NewUser", "xNewUser", "password")

End Sub

ADOX
Sub ADOCr eat eUser ()

D m cat As New ADOX. Cat al og

" Open the catal og, specifying the system database to use

cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=C.\nw nd. ndb;" & _
"Jet OLEDB: System dat abase=C: \ sysdb. ndw, " & _
"User | d=Adni n; Passwor d=password; "

" Create the new user and append it to the users collection
cat. Users. Append "NewlUser", "password"

End Sub

Unlike with DAO, with ADOX you do not have to create a User object before adding
the user to the database with the Append method. With ADOX you can create a new

user simply by passing the name and password to the Append method of the Users
collection. Note that there is an additional parameter, PID, supplied when creating a
user in DAO. This parameter is not required when creating a new user in ADOX
because the Jet Provider automatically generates PID values.

Adding users to a group makes maintaining permissions easier. Because users within a
group inherit the permissions of the group you can set permissions once and have it
apply to an entire group of users. For example, you can assign update permissions for
the Salary table to all managers by simply granting the Managers group update
permission.

The following code example demonstrates how to create a new group and add an
existing user to that group.

DAO
Sub DAQAddUser ToNewG oup()

D m wks As DAO. Wor kspace
" Open the workspace

DBEngi ne. SystenDB = "C: \ sysdb. mdw'

Set wks = DBEngi ne. Cr eat eWor kspace("", "Admi n", "password")

"Create a new group
wks. G oups. Append wks. Creat eG oup(" NewG oup”, "xNewG oup")
" Add the user to the new group
wks. Users("MyUser"). Groups. Append _
wks. Users("MyUser"). Creat eG oup(" News oup")

End Sub

ADOX
Sub ADQAddUser ToNewG oup()

D m cat As New ADOX. Cat al og
" Open the catal og
cat.Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Source=C.\ nwi nd. ndb; User | d=Adnm n; Passwor d=password;" & _
"Jet OLEDB: System dat abase=C: \ sysdb. ndw"
" Create a new group
cat. &G oups. Append " NewG oup”

" Add the user to the new group
cat. Users("MyUser"). Groups. Append " NewG oup"

End Sub

Both DAO and ADOX have a Groups collection on the Users object that can be used
to add the user to a group as well as to determine what groups the user belongs to.
However, note that with DAO you must recreate the group using the User object's
CreateGroup method before appending the Group to the User object's Groups
collection. With ADOX it is neither necessary nor valid to recreate the group; just
append the name of the group to the User object's Groups collection.

By setting permissions you can control a user's access to an object. For example, you
can allow one user to read an object's contents, but not change them. Permissions can
be set for a specific user or an entire group of users. When permissions are set for a
group, every user in that group inherits those permissions.

In the example below, the user created in the section, "Creating Users and Groups" is
granted permissions to read, insert, update, and delete data.

DAO
Sub DAGCSet User Obj ect Per mi ssi ons()

D mdb As DAQ. Dat abase
D m wks As DAO. Wor kspace
Di m doc As DAQ. Docunent

" Open the database

DBENngi ne. SystenDB = "C:. \ sysdb. mdw"

Set wks = DBEngi ne. Cr eat eWr kspace("", "Adm n", "password")
Set db = wks. OpenDat abase(" C. \ nwi nd. ndb")

" Set permissions for MyUser on the Custoners table

Set doc = db. Contai ners("Tabl es"). Docunent s(" Cust oners")

doc. User Name = "MyUser"

doc. Perm ssions = dbSecRetrieveData O dbSecl nsertData _
O dbSecRepl acebData O dbSecDel et eDat a

End Sub

ADOX
Sub ADOCSet User Obj ect Per mi ssi ons()

D m cat As New ADOX. Cat al og

" Open the catal og

cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Source=C.\ nw nd. ndb; User | d=Adnm n; Passwor d=password;" & _
"Jet OLEDB: System dat abase=C: \ sysdb. ndw"

"Set permissions for MyUser on the Custoners table

cat. Users("MyUser"). Set Perm ssi ons "Custoners"”, adPernCbj Tabl e,
adAccessSet, adRi ghtRead Or adRi ghtlnsert O adRi ghtUpdate _
O adRi ghtDel ete

End Sub

The process for setting permissions with ADOX is essentially the inverse of the DAO
process. With DAO, you first select the object and then indicate the user for whom to
set permissions. With ADOX, you first select the user and then specify the object on
which to set permissions.

In addition, with DAO you set a series of properties in order to set permissions on an
object. In the example above, you set the UserName property followed by the
Permissions property. With ADOX, a single method, SetPermissions, is used to set
permissions on an object. The SetPermissions method has parameters that map to
the properties used in DAO.

With the DAO Permissions property, which maps to the Rights parameter of the
ADOX SetPermissions method, you supply a constant or combination of constants
that represent the permissions to set. The table below shows how the DAO Security
constants map to the ADOX Rights constants.

DAO ADOX

dbSecNoAccess adRightNone
dbSecFullAccess adRightFull

dbSecDelete adRightDrop
dbSecReadSec adRightReadPermissions
dbSecWriteSec adRightWritePermissions
dbSecWriteOwner adRightWriteOwner
dbSecCreate adRightCreate
dbSecReadDef adRightReadDesign
dbSecWriteDef adRightWriteDesign
dbSecRetrieveData adRightRead
dbSecInsertData adRightInsert
dbSecReplaceData adRightUpdate

dbSecDeleteData

adRightDelete

dbSecDBAdmin adRightFull

dbSecDBCreate adRightCreate
dbSecDBExclusive adRightExclusive
dbSecDBOpen adRightExecute

As shown in the table above, DAO has specific security constants for setting
permissions on a database. These constants are used with the Databases container or
a database object. In the following listings, you can see how to use both DAO and
ADOX to set permissions for a user on a database object.

DAO
Sub DACSet Dat abasePer mi ssi ons()

D mdb As DAQ. Dat abase
D m wks As DAO. Wor kspace
D m doc As DAQO. Docunent

" Open the database

DBEngi ne. SystenDB = "C:. \ sysdb. mdw'

Set wks = DBEngi ne. Cr eat eWr kspace("", "Adm n", "password")
Set db = wks. OpenDat abase(" C.\ nwi nd. ndb")

" Set permissions for MyUser on the Custoners table

Set doc = db. Cont ai ners("Dat abases"). Docunent s(" MsysDB")
doc. User Nane = "MWUser"

doc. Perm ssi ons = dbSecDBExcl usi ve

End Sub

ADOX
Sub ADCSet Dat abasePer m ssi ons()

D m cat As New ADOX. Cat al og

" Open the catal og

cat. Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Source=C:.\ nwi nd. ndb; User | d=Adnm n; Passwor d=password;" & _
"Jet OLEDB: System dat abase=C: \ sysdb. ndw"

"Set permissions for MyUser on the Custoners table
cat. Users("MyUser"). Set Perni ssions "", adPernCbj Dat abase,
adAccessSet, adRi ght Excl usi ve

End Sub

Setting permissions for a database differs slightly from other objects. When using
DAO, you must specify "MSysDb" as the document name when you want to specify
permissions for the current database. To do the equivalent in ADOX, specify an empty
string ("") as the name of the database.

In addition to granting permissions to a user on specific objects you may also want to
specify permissions for a class/container of objects such as Tables. When specifying
permissions on a container, you can indicate whether or not new objects of that class
created by the user should inherit those permissions by default.

DAO
Sub DAGSet User Cont ai ner Per mi ssi ons()

Di m db As DAQ. Dat abase
D m wks As DAO. Wor kspace
Dmectr As DAQ. Cont ai ner

" Open the database

DBEngi ne. SystenDB = "C:. \ sysdb. mdw'

Set wks = DBEngi ne. Cr eat eWor kspace("", "Adm n", "password")
Set db = wks. OpenDat abase(" C. \ nwi nd. ndb")

"Set permissions for MyUser on the Tabl es Contai ner

Set ctr = db. Contai ners("Tabl es")

ctr.UserNane = "MUser"

ctr.lnherit = True

ctr.Perm ssions = dbSecRetrieveData O dbSeclnsertData _
O dbSecRepl aceData O dbSecDel et eDat a

End Sub

ADOX
Sub ADCSet User Cont ai ner Per m ssi ons()

D m cat As New ADOX. Cat al og
" Open the catal og
cat. Acti veConnecti on = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Source=C:.\ nwi nd. ndb; User | d=Adnm n; Passwor d=password;" & _
"Jet OLEDB: System dat abase=C: \ sysdb. ndw"

"Set permissions for MyUser on the Tabl es Contai ner
cat. Users("MyUser"). Set Permi ssi ons Null, adPernCbj Tabl e,

adAccessSet, adRightRead Or adRightlnsert O adRi ghtUpdate _
O adRi ght Del ete, adlnheritBoth

End Sub

With DAO, the Container object was used to specify permissions for a class of objects.
With ADOX, setting the Name parameter of the SetPermissions object to Null sets
permissions for the class of objects specified by the ObjectType parameter. The
InheritType parameter of the ADOX SetPermissions method indicates whether or not
new objects should inherit the permissions. This is equivalent to setting the DAO
Inherit property to True.

When using DAO within Microsoft Access, you can also set permissions on Access-
specific objects. Like the Microsoft Jet objects, these objects are represented by
Containers and Documents.

ADOX, using the Jet Provider, also supports setting permissions for Access-specific
objects. The ObjectType and ObjectTypeld parameters of the SetPermissions method
are used to specify which Access object you want to set permissions on.

DAO
Sub DAGCSet MBAccessChj ect Per mi ssi ons()

D mdb As DAQ. Dat abase
D m wks As DAO. Wor kspace
Di m doc As DAQ. Docunent

" Open the database

DBENngi ne. SystenDB = "C:. \ sysdb. mdw"

Set wks = DBEngi ne. Cr eat eWr kspace("", "Adm n", "password")
Set db = wks. OpenDat abase(" C. \ nwi nd. ndb")

" Allow the user to open the form but not view the design
Set doc = db. Contai ners("Forns").Docunments("Main Switchboard")
doc. User Name = "MyUser"

doc. Perm ssions = 256 ' acSecFr nRpt Execut e

End Sub

ADOX
Sub ADOSet MSAccessChj ect Per mi ssi ons()

D m cat As New ADOX. Cat al og
" Open the catal og

cat. Acti veConnecti on = "Provi der=M crosoft.Jet.OLEDB. 4.0;" & _
"Dat a Source=C:.\ nw nd. ndb; User | d=Adnm n; Passwor d=password;" & _

"Jet OLEDB: Syst em dat abase=C: \ sysdb. ndw'

All ow the user to open the form but not view the design
cat. Users("MyUser"). Set Permi ssions "Main Sw tchboard",
adPer mbj Provi der Speci fic, adAccessSet, adRi ght Execute, ,
JET_SECURI TY_FORMS

End Sub

In the ADOX example, the ObjectType parameter of the SetPermissions method is
specified as adPermObjProviderSpecific. This indicates that you want to set
permissions for an object type that ADOX doesn't inherently understand. The last
parameter, ObjectTypeld, is the provider specific GUID that identifies the object, in
this case Microsoft Access Forms. The Jet Provider defines the GUIDs for the Access
specific objects.

The following table shows how the DAO Containers map to the GUIDs used with the
ADOX ObjectTypeld parameter. It also shows the constant name that can be used if
you have the Microsoft Jet OLE DB Constants text file from Appendix C.

DAO ADOX ObjectTypeld JetOLEDBConstants.txt

Containers Constant

Forms {c49c842e-9dcb-11d1-9f0a- JET_SECURITY_FORMS
00c04fc2c2e0}

Reports {c49c8430-9dcb-11d1-9f0a- JET_SECURITY_REPORTS
00c04fc2c2e0}

Macros {c49c842f-9dcb-11d1-9f0a- JET_SECURITY_MACROS
00c04fc2c2e0}

Modules {c49c8432-9dcb-11d1-9f0a- JO_SECURITY_MODULES
00c04fc2c2e0}

The database, and every object in the database, has an owner. By default, the owner
is the user that created that object. The object owner has special priveleges for that
object in that he or she can always assign or revoke permissions for that object.

The following listings demonstrate how to get the user name of the object owner.
DAO

Sub DAOGCet Obj ect Oaner ()

D m db As DAO. Dat abase
D m wks As DAO. Wor kspace

Open t he dat abase
DBEngi ne. SystenDB = "C:. \ sysdb. mdw'
Set wks = DBEngi ne. Cr eat eWr kspace("", "Adm n", "password")

Set db = wks. OpenDat abase(" C. \ nwi nd. ndb")

Print the owner of the Custoners table
Debug. Pri nt db. Cont ai ners(" Tabl es") . Docunent s(" Cust oners") . Oaner

End Sub

ADOX
Sub ADOGet Ohj ect Owner ()

D m cat As New ADOX. Cat al og
" Open the catal og
cat.Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C.\ nwi nd. mdb; User |d=Adni n; Passwor d=password;" & _
"Jet OLEDB: Syst em dat abase=C. \ sysdb. ndw'
" Print the owner of the Custoners table
Debug. Print cat. Get Obj ect Owmer (" Cust omers", adPernbj Tabl e)

End Sub

With DAO, you use the Owner property of a Document or Container object to
retrieve the user name of the object owner. With ADOX, you use the
GetObjectOwner method of a Catalog object. This method takes the object's name
and type as parameters.

Replication

Replication enables users at different locations to easily share the changes they are
making to a database. Copies of a database, called replicas, can be made and
distributed to users at different locations. Users at each location can work on their
local copy and then share, or synchronize, their changes with users at other locations.

Note Use JRO, not ADO, to implement replication in your application.

The first step in enabling replication is to create a design master. A design master is
the only replica in the replica set which can make both schema and data changes, all
other replicas can only make data changes to replicated objects. Making a database

replicable makes the database a design master.

The following listings demonstrate how to make an existing database replicable.
DAO

Sub MakeDesi gnMast er ()

Di m dbsNort hwi nd As DAQO. Dat abase
Di m prpNew As DAQO. Property

" Open database for exclusive access.
Set dbsNort hwi nd = DBEngi ne. OpenDat abase(" Nort hwi nd. ndb", True)

Wth dbsNorthw nd
" If Replicable property doesn’t exist, create it.
" Turn off error handling in case property exists.
On Error Resune Next
Set prpNew = . CreateProperty("Replicable", dbText, "T")
. Properties. Append prpNew
' Set database Replicable property to True.
.Properties("Replicable") ="T"
. Cl ose
End Wth

End Sub

JRO
Sub MakeDesi gnMast er ()

Di mrepMaster As New JRO Replica

" Make the Northw nd database replicable.
" If successful, this will create a connection to the

dat abase.
repMast er. MakeRepl i cabl e "Nort hwi nd. mdb", Fal se

Set repMaster = Nothing

End Function

The JRO model simplifies the code for making a database replicable. To make a
database replicable using DAO, the database must be opened, the Replicable
property created and appended to the Properties collection of the database, and then
the property set to "T". With JRO, a database can be made replicable with a single
method, MakeReplicable.

The MakeReplicable method in JRO has an optional second parameter named
ColumnTracking set to False in the example above. It indicates whether or not changes
are tracked at the column level or row level. DAO did not expose the ability to track
changes at the column level. Therefore, this parameter must be set to False if you

want the same behavior as DAO. See the section, "New Features in JRO" for more
information on column level tracking.

As with DAO, the process of making a database replicable using JRO cannot be
reversed. It is recommended that you make a backup of your database before
performing this operation.

By default, when a database is made replicable all objects in that database will be
replicated. If you do not want an object replicated you must indicate that the object
should not be replicated (that is, it should remain local) before you make the database
replicable.

In contrast, when you create a new table, query, form, report, macro, or module at a
replica, the object is considered local and is stored only at that replica. If you want
users at other replicas to be able to use the object, you must make it replicable.

This following listings demonstrate how to indicate that an object should be kept local
when the database is made replicable.

DAO
Sub KeepObj ect Local ()

Di m dbsNort hwi nd As DAQO. Dat abase
Di m docTenp As DAOQ. Docunent
Di m prpTenp As DAO. Property

Set dbsNort hwi nd = DBENngi ne. OpenDat abase(" Nort hwi nd. ndb")

Set docTenp = dbsNort hw nd. Cont ai ner s(" Modul es") .
Docunents("Uility Functions")

Set prpTenp = doc. Creat eProperty("KeepLocal", dbText, "T")

docTenp. Properties. Append prpTenp

dbsNor t hwi nd. Cl ose

End Sub

JRO
Sub KeepObj ect Local ()

Di m r epMast er As New JRO Replica
repMast er. Acti veConnecti on = "Northw nd. ndb"

repMaster. Set Cbj ectReplicability "Utility Functions", "Modules",
Fal se

Set repMaster = Not hi ng

End Sub

This next example shows how to make a new object in a replica replicable.

DAO
Sub

MakeOhj ect Repl i cabl e(strTabl e As Tabl e)

Di m dbsNort hwi nd As DAQ. Dat abase
D mtdf Tenp AS DAO. Tabl eDef

Set dbsNort hwi nd = DBENngi ne. OpenDat abase(" Nort hwi nd. ndb")

Set tdf Tenp = dbsNorthwi nd. Tabl eDef s(strTabl e)
On Error GoTo ErrHandl er

t df Tenp. Properties("Replicable") = "T"

On Error GoTo O

dbsNort hwi nd. Cl ose

Exit Sub

Er r Handl er:

End

JRO
Sub

D m prpNew As Property

If Err.Nunmber = 3270 Then

Set prpNew = tdf Tenp. Creat eProperty("Replicabl e",

t df Tenp. Properti es. Append pr pNew
El se
MsgBox "Error " & Err & ": " & Error
End If

Sub

MakeObj ect Repl i cabl e(strTable As String)

D m repMast er As New JRO. Replica

repMast er. Acti veConnecti on = "Nort hw nd. ndb"

repMast er. Set Cbj ect Replicability strTable, "Tables",

Set repMaster = Not hi ng

dbText,

True

T

End Sub

With DAO, two properties, Replicable and KeepLocal determine whether or not an
object is or will be replicated. Use the KeepLocal property prior to making the
database replicable to indicate that the object should not be made replicable when the
database is made replicable. Use the Replicable property after the database is made
replicable to indicate whether or not the object should be replicated. DAO requires you
to create the properties using the CreateProperty method of the object's Properties
collection before you can set them.

With JRO, the GetObjectReplicability and SetObjectReplicability methods are
used, both before and after the database is made replicable, to determine or set
whether the object is or will be replicated. The method takes the name of the object
you wish to get or set replicability for, the type of the object, and a Boolean value that
indicates whether it should be kept local or made replicable.

The following pseudocode is the algorithm for mapping the DAO KeepLocal and
Replicable properties to the ADO ObjectReplicability.
| f DAO. Dat abase. Replicable ='T
If DAO Object.Replicable ='T
JRO Obj ectReplicability = True
El se
JRO Obj ectReplicability = Fal se
El se
I f DAO. bject.KeepLocal ="'T
JRO. Obj ectReplicability = Fal se
El se
JRO Obj ectReplicability = True

The following listings demonstrate how to create a full, read/write replica of an existing
replica using DAO and then using JRO.

DAO

Functi on MakeAdditi onal Repli ca(strReplicableDB As Stri ng,
strNewReplica AS String) As Integer

Di m dbsTenp As DAQ. Dat abase
Set dbsTenp = DBEngi ne. OpenDat abase(str Repl i cabl eDB)

dbsTenp. MakeRepl i ca strNewReplica, "Replica of " & _
strRepl i cabl eDB

dbsTenp. d ose

End Function

JRO

Functi on MakeAddi ti onal Replica(strReplicableDB As String,
strNewReplica As String) As Integer

D mrepMaster As New JRO. Replica

repMast er. Acti veConnection = strReplicabl eDB

repMaster. Creat eReplica strNewReplica, "Replica of " &
strRepl i cabl eDB

Set repMaster = Not hi ng

End Functi on

The code for creating a replica with JRO is similar to the DAO code. Both examples
begin with opening or connecting to the design master. In DAO, the design master is
opened with the DBEngine object's OpenDatabase method. In ADO, setting the
Replica object's ActiveConnection property opens the design master. Once it is
open, the new replica is creating by calling a method to create the replica. The JRO
equivalent to the DAO MakeReplica method is CreateReplica.

The DAO MakeReplica method has an optional parameter named Options. This
parameter allows you to indicate the type of replica to create: full or partial, read-only
or read/write.

In JRO there are two optional parameters named Type and Updatability. The Type
parameter allows the user to indicate whether the replica should be full or partial. The
Updatability parameter allows the user to indicate whether the replica is read-only or
fully updatable.

The following table shows how the optional parameters and constants for the DAO
MakeReplica method map to those for the JRO CreateReplica method.

DAO Parameter DAO Constant JRO Parameter JRO Constant
Options dbRepMakePartial Type jrRepTypePartial
Options dbRepMakeReadOnly Updatability jrRepUpdReadOnly

The JRO CreateReplica method has two additional, optional parameters named
Visibility and Priority. These parameters are omitted in the JRO code example above
indicating that the default value should be used. Visibility and Priority are new in JRO
and provide additional control over how synchronizations with the replica will be
performed. The default value for each of these parameters maps to the DAO behavior.
See the section, "New Features in JRO" for more information about replica visibility
and priority.

Sometimes, it is necessary to create replicas that contain a subset of the data
contained in another replica. For example, a business might store its entire sales
database at the headquarters office but replicate only regional data to its regional
offices across the country. You can create a separate replica for each regional office
that contains only the data relating to that region. The database at the headquarters
office would be a full replica, with which each partial replica would be synchronized.

There are two ways to filter the data in a partial replica. The first method is by an
expression, similar to an SQL WHERE clause (without the word WHERE). With an
expression-based filter, the records in the table are limited to those that satisfy the
expression. The second method to filter data is with a relationship filter. Relationship
filters allow you to enforce the relationship when replicating data. It is generally used
in conjunction with an expression-based filter.

The following listings demonstrate how to create a new partial replica and then
populate the data in the partial replica limited by both an expression based filter and a
relationship based filter.

DAO
Sub CreatePartial ()

Di m dbsFul | As DAQ. Dat abase

Di m dbsParti al As DAQ. Dat abase

D m t df Cust oners As DAQO. Tabl eDef

Dimrel Cust Orders As DAQO. Rel ation

" Create partial replica.

Set dbsFull = DBEngi ne. OpenDat abase(" Nort hwi nd. ndb")

dbsFul | . MakeRepl i ca " C.\ SALES\ FY96. MDB", "Partial Sales Replica",
dbRepMakeParti al

dbsFul I . d ose

"Create an expression based filter in the partial replica.

Set dbsPartial = DBEngi ne. OpenDat abase(" C: \ SALES\ FY96. MDB", True)
Set tdf Customers = dbsParti al . Tabl eDef s(" Cust oners")

tdf Custoners. ReplicaFilter = "Region = "CA'"

" Create a filter based on a relationship in the partial replica.
Set rel CustOrders = dbsPartial.Rel ations("CustonersOders")

rel CustOrders. Partial Replica = True

" Repopul ate the partial replica based on the filters.
dbsParti al . Popul at eParti al "Northw nd. ndb"

dbsPartial . C ose

End

JRO
Sub

End

The

Sub

CreatePartial ()

D mrepFul | As New JRO. Replica
D mrepPartial As New JRO. Repli ca

" Create partial replica.

repFul | . Acti veConnecti on = "Northw nd. ndb"

repFul | . CreateReplica "C: \ SALES\ FY96. MDB", "Partial Sales Replica",
j rRepTypeParti al

Set repFull = Not hing

" Create an expression based filter in the partial replica.
repPartial . Acti veConnection = "C:\ SALES\ FY96. MDB"
repPartial.Filters. Append "Custonmers”, jrFilterTypeTabl e,
"Region = "CA "

" Create a filter based on a relationship in the partial replica.
repPartial.Filters. Append "Orders”, jrFilterTypeRel ati onship,

"Cust omer sOrders”

" Repopul ate the partial replica based on the filters.
repPartial . Popul atePartial "Northw nd. ndb"

Set repPartial = Nothing

Sub

process for creating a partial replica is the same in JRO as it is in DAO. With both

models the process is as follows: create the partial replica, create the filter(s),
populate the partial replica using the filters. The primary difference between the two
models is in creating the filters. DAO exposes properties of the Table and Relation
objects for creating filters. JRO has a Filters collection. Use the Filters collection
Append method to create new filters.

The following listings demonstrate how to list all of the filters for a partial replica.
DAO

Sub

DACLi stFilters()

D m dbParti al As DAQ Dat abase
D mtbl As DAQO Tabl eDef
Dmrel As DAQO Rel ation

Set dbParti al = DBEngi ne. OpenDat abase(" C: \ Sal esFY96. ndb")

For Each tbl In dbPartial. Tabl eDefs
If tbl.ReplicaFilter <> "" Then
Debug. Print tbl.Nanme & " : " & "Table Filter" &" : " &
tbl.ReplicaFilter
End | f
Next

For Each rel In dbPartial.Relations
If rel.Partial Replica <> "" Then
Debug. Print rel .Name & " : " & "Relationship Filter"
End | f
Next

dbPartial . Cl ose

End Sub

JRO

Sub ListFilters()

DimrepPartial As New JRO. Repl i ca
Dmflt As JRO Filter
DmstrFilterType As String

repPartial . Acti veConnection = "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _

"Dat a Sour ce=C: \ Sal esFY96. ndb"

For Each flt In repPartial.Filters
If flt.FilterType = jrFilterTypeTabl e Then
strFilterType = "Table Filter"

El se
strFilterType = "Relationship Filter"
End | f
Debug. Print flt.TableName & " : " & strFilterType & " : " & _

flt.FilterCriteria
Next

Set repPartial = Nothing

End Sub

Synchronizing two replicas involves exchanging data and design changes.
Synchronization can be bi-directional, (that is, changes in each replica are propagated
to the other) or can occur in a single direction.

The following listing demonstrates how to synchronize changes between two replicas.
The first example shows how to do a direct, two-way synchronization.

DAO
Sub TwoWayDi rect Sync()

Di m dbsNort hwi nd As DAQO. Dat abase
Set dbsNort hwi nd = DBENngi ne. OpenDat abase(" Nort hwi nd. ndb")

' Sends changes made in each replica to the other.
dbsNor t hwi nd. Synchroni ze "Nw epl i ca. ndb", dbRepl npExpChanges

dbsNort hwi nd. Cl ose

End Sub

JRO
Sub TwoWayDi rect Sync()

DmrepMaster As New JRO Replica

repMast er. Acti veConnecti on = "Nort hw nd. ndb"

' Sends changes made in each replica to the other.
repMast er. Synchroni ze "Nwreplica. mdb", jrSyncTypel npExp,
j rSynchModeDi r ect

Set repMaster = Nothi ng

End Sub

The following example shows how to do a two-way synchronization over the Internet.
DAO

Sub | nternet Sync()

Di m dbsTenp As DAO. Dat abase

Set dbsTenp = DBEngi ne. OpenDat abase("C: \ Dat a\ Or dEnt ry. ndb")
" Synchroni ze the | ocal database with the replica on
the Internet server.
dbsTenp. Synchroni ze "ww. myconpany. nyserver. coni’ _
& "/files/ Orders. ndb", dbRepl mpExpChanges + dbRepSyncl nt er net

dbsTenp. Cl ose

End Sub

JRO
Sub I nternet Sync()

DimrepMaster As New JRO Replica
repMast er. Acti veConnection = "C: \ Data\ OrdEntry. ndb"

" Synchronize the | ocal database with the replica on

the Internet server.
repMast er. Synchroni ze "ww. myconpany. nyserver.conl' _
& "/files/Orders. mdb", jrSyncTypel npExp, jrSyncModel nter net

Set repMaster = Not hi ng

End Sub

The JRO and DAO code for performing a two way, direct synchronization between two
replicas is similar. However, note that the JRO Synchronize method has an additional
parameter that specifies jJrSyncModeDirect. For functionality equivalent to DAO you
must specify jJrSyncModeDirect when calling the Synchronize method. In JRO, if the
SyncMode parameter is omitted, the synchronization will be performed indirectly. The
ability to perform indirect synchronizations is a new feature in JRO designed to
increase performance when synchronizing over a Wide Area Network (WAN). See the
section, "New Features in JRO" for more information about performing indirect
synchronizations.

The following table shows the mapping between the DAO Exchange parameter of the
Synchronize method and the JRO SyncType and SyncMode parameters.

DAO Parameter DAO Constant JRO Parameter JRO Constant

Exchange dbRepExportChanges SyncType jrSyncTypeExport

Exchange dbRepImportChanges SyncType jrSyncTypelmport
Exchange dbRepImExpChanges SyncType jrSyncTypelmpExp
Exchange dbRepSynclnternet SyncMode jrSyncModelnternet

If two users at two separate replicas each make a change to the same record in the
database, a conflict may occur. If changes are being tracked at the row level, a conflict
will occur if two users make a change to the same record. If changes are being tracked
at the column level, a conflict will occur if two users make a change to the same
column with a record. When a conflict occurs, the changes made by one user will fail to
be applied to the other replica. Information regarding the conflict will be replicated to
both replicas.

Information about the conflict is contained in a conflict table in each replica. Conflict
tables contain the information that would have been placed in the table if the change
had been successful. You can examine these conflict tables and work through them
row by row, resolving the conflicts as appropriate.

The following listings demonstrate how to determine whether conflicts occurred during
synchronization and, if conflicts did occur, how to retrieve the names of the conflict
tables that were created.

DAO
Sub Conflict Tabl es()

D m dbsNort hwi nd As DAQO. Dat abase
Di mtdf Test As DAQ. Tabl eDef
Di m bConflict As Bool ean

Set dbsNort hwi nd = DBENngi ne. OpenDat abase(" Nort hwi nd. ndb")
bConflict = Fal se

" Enunerate Tabl eDefs collection and check ConflictTable
" property of each.
For Each tdf Test I n dbsNorthw nd. Tabl eDef s
If tdf Test. ConflictTable <> "" Then
"There was a conflict with this table
Debug. Print tdf Test.Name & " had a conflict."
bConflict = True
End |f
Next tdf Test

"If bConflict is still false then we didn't find any
"tables that had conflicts.
If Not bConflict Then Debug.Print "No conflicts."

dbsNort hwi nd. Cl ose

End Sub

JRO
Sub Conflict Tabl es()

Di m r epMast er As New JRO. Replica
DmrstConflicts As ADODB. Recor dset

repMast er. Acti veConnecti on = "Northw nd. ndb"
Set rstConflicts = repMaster. ConflictTabl es

If rstConflicts.BOF and rstConflicts. EOF Then
"There are no conflict tables so no conflicts occurred.
Debug. Print "No conflicts."
El se
While Not rstConflicts. EOF
Debug. Print rstConflicts.Fields(0) &" had a conflict."
rst Conflicts. MoveNext
Wend
End If

End Sub

With JRO, the ConflictTables property of the Replica object is used to determine
which tables had conflicts. This property returns an ADO Recordset object that
contains one row for each table containing conflicts. With the ConflictTables property
it is easy to determine whether or not conflicts occurred. If the Recordset is empty
(the BOF and EOF properties of the Recordset are both true), then no errors
occurred. This differs from DAO in that with DAO you must check the ConflictTable
property for each table in the TableDefs collection to determine whether conflicts
occurred and what the name of the related conflict table is.

Handling Errors

There are two types of errors that can occur when executing ADO, ADOX, or JRO code:
ADO errors and provider errors. ADO errors occur when you attempt to perform an
invalid operation such as trying to retrieve the tenth Field from the Recordset
object's Field collection when the Fields collection only contains five fields.

Provider errors are errors generated by the OLE DB provider or underlying data
source. For example, specifying an invalid file name as the data source when trying to
open a Microsoft Jet database will result in a provider error.

ADO errors are exposed by the run-time exception handling mechanism. In Visual
Basic for Applications, an ADO error will trigger the On Error event and the Err object
will contain information about the error. The ADO error will not create a new Error
object in the Errors collection of the ADO Connection. OLE DB provider errors will
create new Error objects in the Errors Collection of the ADO Connection.

The Error object in both DAO and ADO is unlike the error variables and functions in
Visual Basic in that more than one error can be generated by a single operation. The
set of Error objects in the Errors collection describes one error.

The following code attempts to open a database that doesn't exist and then displays
the error(s) that result.

DAO

Sub DAODat abaseError ()
On Error GoTo DACDat abaseError _Err

Di m db As DAQ. Dat abase
Di m err DB As DAOQ. Error

Set db = DBENngi ne. OpenDat abase(" c: \ nonexi st ant. ndb")
Exit Sub

DAQDat abaseError _Err:
For Each errDB I n DBEngine.Errors
Debug. Print "Description: " & errDB.Description
Debug. Print "Number: " & errDB. Nunber
Debug. Print "JetErr: " & errDB. Nunber
Next

End Sub

ADO

Sub ADODat abaseError ()
On Error GoTo ADCDat abaseError _Err

Di m cnn As New ADODB. Connecti on
Di m err DB As ADQCDB. Err or

cnn. Open "Provi der=M crosoft.Jet. CLEDB. 4.0;" & _
"Dat a Source=c:\nonexi stant. ndb"

Exit Sub

ADODat abaseError _Err:
For Each errDB In cnn.Errors
Debug. Print "Description: " & errDB.Description
Debug. Print "Nunber: " & errDB. Nurmber
Debug. Print "JetErr: " & errDB. SQLState
Next

End Sub

The code is very similar. Note, however, that the ADO code will print two different
error numbers. The first number is the ADO/OLE DB error code. This error code will be
the same for similar errors regardless of the provider being used. This allows you to
write ADO applications that can handle errors even when the provider is changed. The
second number is a provider-specific error code. When using the Jet Provider, this
error number will be the same error number that DAO returns. However, other
providers may return different numbers for this type of error.

Using Transactions

A transaction is defined as a "logical unit of work". Use transactions to enforce data
integrity by making sure that multiple, related database operations are committed in
an all or nothing manner. Microsoft Jet allows you to include both DML and DDL
operations within a single transaction.

The following listing demonstrates how to use a transaction. It combines DML and DDL
operations within a single transaction. If any part of the code fails, all changes will be
rolled back. The code creates a new table named Contacts, populates it with data from
the Customers table, adds a new column named Contactld to the Customers table, and
then deletes the columns containing contact information from the Customers table.

DAO

Sub DAOTr ansact i ons()
On Error GoTo DACOTransactions_Err

D m wks As DAO. Wor kspace
D m db As DAOQ. Dat abase
Di mtbl As DAQ. Tabl eDef

Dm bTrans As Bool ean

Get the default workspace
Set wks = DBEngi ne. Wr kspaces(0)

" Open the database
Set db = wks. OpenDat abase(" C.\ nwi nd. ndb")

Begin the Transaction
wks. Begi nTr ans
bTrans = True

" Create the Contacts table.

Set tbl = db. CreateTabl eDef (" Contacts")

Wth thbl
" Create fields and append themto the new Tabl eDef object.
" This nmust be done before appendi ng the Tabl eDef object to
" the Tabl eDefs coll ection of the Database.
. Fi el ds. Append . CreateFiel d("Contactld", dbLong)
.Fields("Contactld").Attri butes = dbAutolncrField
. Fi el ds. Append . Creat eFi el d(" Cont act Nane", dbText)
.Fields. Append . CreateField("ContactTitle", dbText)
. Fi el ds. Append . Creat eFi el d("Phone", dbText)
. Fi el ds. Append . Creat eFi el d(" Notes", dbMeno)
.Fields("Notes").Required = Fal se

End Wth

db. Tabl eDef s. Append t bl

" Populate the Contacts table with information fromthe

' custoners table

db. Execut e "I NSERT | NTO Contacts (ContactNanme, ContactTitle," & _
"Phone) SELECT DI STI NCTROW Cust orrer s. Cont act Nane, " & _

"Custoners. ContactTitle, Custoners.Phone FROM Custoners;"
' Add a Contactld field to the Custoners Tabl e
Set tbl = db. Tabl eDef s(" Cust onmers")
tbl . Fiel ds. Append tbl.CreateFiel d("Contactld", dbLong)

" Popul ate the Custoners table with the appropriate Contactld

db. Execut e "UPDATE DI STI NCTROW Contacts INNER JO N Customers " & _

"ON Cont acts. Cont act Nane = Custoners. Contact Nane SET " & _
"Custoners. Contactld = [Contacts].[Contactld];"

" Delete the ContactNane, ContactTitle, and Phone columms from
" Custoners

tbl . Fi el ds. Del ete " Cont act Nanme"

tbl.Fields.Delete "ContactTitle"

tbl . Fiel ds. Del ete "Phone"

" Commit the transaction
wks. Commi t Tr ans

Exit Sub

DAOTr ansactions_Err:
I f bTrans Then wks. Rol | back

Debug. Pri nt DBENngi ne. Errors(0).Description
Debug. Pri nt DBENngi ne. Errors(0). Nunber 1

End Sub

ADO

Sub ADOTr ansact i ons()
On Error GoTo ADOITr ansactions_Err

Di m cnn As New ADODB. Connecti on
D m cat As New ADOX. Cat al og
Di mt bl As New ADOX. Tabl e

Dim bTrans As Bool ean

" Open the connection

cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

" Begin the Transaction

cnn. Begi nTr ans

bTrans = True

Set cat. ActiveConnection = cnn

" Create the Contacts table
Wth thbl
. Name = "Contacts"
Set . Parent Catal og = cat
. Col ums. Append "Contactld", adlnteger
. Colums("Contactld"). Properties("Autolncrenent") = True
. Col ums. Append " Cont act Name", adWChar
. Col ums. Append "ContactTitle", adWChar
. Col ums. Append "Phone", adWChar
. Col ums. Append "Notes", adLongVarWchar
. Col ums(" Notes").Attri butes = adCol Nul | abl e
End Wth

cat . Tabl es. Append t bl

" Populate the Contacts table with information fromthe

customers table

cnn. Execute "I NSERT | NTO Cont acts (ContactNane, ContactTitle," & _
"Phone) SELECT DI STI NCTROW Cust orrer s. Cont act Nane, " & _
"Custoners. ContactTitle, Custoners.Phone FROM Customers;"

" Add a Contactld field to the Custonmers Tabl e

Set tbl = cat. Tabl es("Custoners")

t bl . Col utms. Append " Cont act1d", adl nteger

" Popul ate the Custoners table with the appropriate Contactld

cnn. Execut e "UPDATE DI STI NCTROW Contacts | NNER JO N Custoners " & _
"ON Cont act s. Cont act Nane = Custoners. Contact Nane SET " & _
"Custoners. Contactld = [Contacts].[Contactld];"

" Delete the ContactName, ContactTitle, and Phone col ums
" from Custoners

t bl . Col utms. Del et e " Cont act Nane"

tbl. Colums. Del ete "ContactTitle"

t bl . Col unms. Del et e " Phone"

" Commit the transaction
cnn. Commi t Tr ans

Exit Sub

ADOTr ansactions_Err:
If bTrans Then cnn. Rol | backTr ans

Debug. Print cnn.Errors(0). Description
Debug. Print cnn. Errors(0). Nunber
Debug. Print cnn.Errors(0). SQLSt at e

End Sub

Both DAO and ADO have similar methods for beginning, committing, and rolling back a
transaction. One difference to note however is that because DAO transactions are tied
to the Workspace object, it is possible to use DAO to perform a transaction that
spans multiple Microsoft Jet databases. ADO transactions are tied to the Connection
object, which limits the transaction to a single data source.

DAO also supports an additional parameter to the CommitTrans method:
dbForceOSFlush. This forces the database engine to immediately flush all updates to

disk, instead of caching them temporarily. The Jet Provider exposes a property, "Jet
OLEDB:Transaction Commit Mode", in the Connection object's Properties collection
that allows you to specify that transactions within that connection should flush all
updates to disk upon commit. Setting this property to 1 is equivalent to using the
dbForceOSFlush parameter.

Compacting a Database

As a database file is used, it can become fragmented as objects and records are
created and deleted. Periodic defragmentation reduces the amount of wasted space in
the file and can enhance performance. Compacting can also repair a corrupted
database.

The following listings demonstrate how to compact a database.
Note Use JRO, not ADO to compact a database.
DAO

Sub DAQConpact Dat abase()

" Make sure there isn't already a file with the
" name of the conpacted database.
If Dir("c:\newnwi nd. ndb") <> "" Then _

Kill "c:\newnw nd. ndb"

' Basic compact - creating new database naned newnw nd
DBEngi ne. Conpact Dat abase " C:.\ nwi nd. ndb", "C: \newnw nd. ndb"

" Delete the original database
Kill "c:\nw nd. ndb"

" Rename the file back to the original nane
Name "c:\newnw nd. mdb" As "c:\nw nd. ndb"

End Sub

JRO
Sub JROConpact Dat abase()
Dmje As New JRO. Jet Engi ne
" Make sure there isn't already a file with the
" nanme of the conpacted database.
If Dir("c:\newnwi nd. ndb") <> "" Then _

Kill "c:\newnw nd. mdb"

" Conpact the database

j e. Conpact Dat abase "Data Source=C.\ nwi nd. mdb; ",
"Dat a Source=C:\ newnwi nd. ndb; "

Del ete the origi nal database
Kill "c:\nw nd. mdb"

Renane the file back to the original nane
Narme "c:\newnw nd. mdb" As "c:\nw nd. mndb"

End Sub

The JRO CompactDatabase method takes two connection strings that indicate the
source database and destination database respectively. See the JRO online help for
more information on the JRO CompactDatabase method.

In addition to defragmenting or repairing your database, CompactDatabase can also
be used to change the database password, convert the database from an older
Microsoft Jet version to a new version, to encrypt or decrypt the database, or to
change the locale of the database. The following code demonstrates how to encrypt a
database.

DAO
Sub DACENcr ypt Dat abase()

Use conpact to create a new, encrypted version of the database
DBENngi ne. Conpact Dat abase " C.\ nwi nd. ndb", "C.\newnw nd. mdb", |,
dbEncrypt

End Sub

JRO
Sub JRCENncrypt Dat abase()

Dmje As New JRO. Jet Engi ne

" Use conpact to create a new, encrypted version of the database
j e. Conpact Dat abase "Data Source=C.\ nwi nd. ndb; ",

"Dat a Sour ce=C:.\ newnwi nd. ndb; Jet OLEDB: Encrypt Dat abase=Tr ue"

End Sub

Refreshing the Cache

Microsoft Jet maintains an internal cache of records for each Microsoft Jet session.
Caching records provides a significant performance improvement, but it means that
other sessions may not immediately see changes.

In DAO a session is associated with a DBEngine object. As each application can only
have one DBEngine object, it means that each application will have its own session. A
given application using DAO will always see its own changes, but other applications
may not see the changes immediately. In ADO a session is associated with a
Connection object. A single application using ADO may have multiple Connection
objects. So within a single application, changes may not been seen immediately.

There may be instances where performance is less important than guaranteeing that a
Recordset contains the latest data. In those instances, it makes sense to force a
refresh of Microsoft Jet's internal cache. Both DAO and JRO provide a mechanism for
this. In DAO, use the DBEngine object's Idle method with dbRefreshCache to force
Microsoft Jet to refresh its cache. With JRO, use the JetEngine object's
RefreshCache method passing in the ADO connection as a parameter.

The following listings demonstrate how to refresh the cache using DAO and JRO.
DAO

Sub DAORef r eshCache()

Di m db As DAQ. Dat abase
Di mrst As DAO. Recordset
Dmfld As DAO. Field

" Open the database
Set db = DBEngi ne. OpenDat abase(" C: \ nwi nd. ndb")

" Refresh the cache to ensure that the | atest data
is avail abl e.
DBENngi ne. 1 dl e dbRefreshCache

Set rst = db. OpenRecordset ("Sel ect * from Shi ppers")
Whil e Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld. Val ue;

Next

Debug. Print

rst. MoveNext
Vend
rst.d ose

End Sub

ADO
Sub JRORef reshCache()

Dimcnn As New ADCDB. Connecti on
D mrst As ADODB. Recor dset
Dmfld As ADODB. Fi el d

Dmje As New JRO. Jet Engi ne

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4.0;" & _
"Dat a Sour ce=C:\ nwi nd. ndb; "

" Refresh the cache to ensure that the |atest data
" is available.
j e. RefreshCache cnn

" Open a recordset and read the data
Set rst = cnn. Execute("Sel ect * from Shi ppers")
Wil e Not rst.ECF

For Each fld In rst.Fields

Debug. Print fld. Val ue;

Next

Debug. Pri nt

rst. MoveNext
Vend
rst.d ose

End Sub

This example above is somewhat contrived because the cache will most likely already
contain the latest data as the Database and Connection are being opened for the
first time immediately before attempting to open the Recordset. The ability to refresh
the cache is generally more useful when a Database or Connection is opened when
the application is first launched and then at some later point a Recordset with the
latest data needs to be opened.

New Features in ADO, ADOX, and
JRO

The following sections describe new features in ADO, ADOX, JRO, and the Jet Provider.
The functionality exposed by these features is not available in DAO. This is not
intended as a complete list of additional features exposed in ADO, but rather this
section serves to highlight some of the new functionality.

Often, a developer finds a need for a place to temporarily store some data, or wants
some data to act like it came from a server so it can participate in data binding in a
user interface.

ADO (in conjunction with the Cursor Service for OLE DB) enables the developer to
build an empty Recordset object by specifying column information and calling Open.
The following code demonstrates this:

Sub ADCOCr eat eRecor dset ()
Dmrst As New ADODB. Recor dset
rst.CursorlLocation = adUseCd i ent

" Add Sone Fi el ds

rst. Fields. Append "dbkey", adlnteger

rst.Fields. Append "fieldl", adVvarChar, 40, adFldlsNull able
rst.Fields. Append "field2", adDate

"Create the Recordset
rst.Open , , adQpenStatic, adlLockBatchOptimstic

" Add Sone Rows

rst. AddNew Array("dbkey", "fieldl", "field2"),
Array(1l, "stringl", Date)

rst. AddNew Array("dbkey", "fieldl", "field2"),
Array(2, "string2", #1/6/1992#)

"Look at the values - a value of 1 for status colum = newy record
rst. MveFirst
Debug. Print "Status", "dbkey", "fieldl", "field2"
While rst. EOF <> True
Debug. Print rst.Status, rst!dbkey, rst!fieldl, rst!field2
rst. MoveNext
Vend

"Commit the rows without ActiveConnection set resets the status bits
rst. Updat eBat ch adAffect Al l

"Change the first of the two rows
rst. MveFirst
rst!fieldl = "changed"

"Now | ook at the status, first row shows 2 (nodified row),
"second shows 8 (no nodifications)
"Also note that the Oiginal Val ue property shows the val ue
"before the nodification
rst. MoveFir st
While rst. EOF <> True
Debug. Print
Debug. Print rst.Status, rst!dbkey, rst!fieldl, rst!field2
Debug. Print , rst!dbkey. Original Val ue, _
rst!fieldl. Original Value, rst!field2.Oiginal Val ue
rst. MoveNext
Wend

End Sub

Another feature of a creatable recordset is that pending operations can be committed
to the recordset. Any time UpdateBatch is called on a client cursor that has no
ActiveConnection set, the changes in the affected row (controlled by the
AffectedRows parameter) will be committed to the buffer and the Status flags will be
reset. The same applies to CancelBatch, except the changes in the buffer will be
reverted and the flag will be reset.

Microsoft Data Links provides a graphical user interface that enables the user to
create, edit, and organize connections to a data source. A Data Link file for
c:\nwind.mdb can be created as follows:

1. In Windows Explorer, select the folder in which you want to create the new data
link. For example, select the C:\ folder to create the data link file in the root
directory of the C drive.

Choose New from the File menu of Windows Explorer.

Choose Microsoft Data Link.

Rename the file nwind.udl.

Double-click on the new file to open the Data Link Properties window.
Select the Provider tab.

Select "Microsoft Jet 4.0 OLE DB Provider" from the list.

Select the Connection tab.

W O N O U A~ WwN

Enter the path to the Northwind database (for example, c:\nwind.mdb) in the first
text box.

The following code shows how to use the data link to open the connection rather than
providing the connection information directly.

Sub UseExi sti ngDat aLi nk()
" Opens an ADO Connection using a Data Links file (UDL)

D mcnn As New ADCDB. Connecti on
cnn. Open "File Name=C:\nwi nd. udl ;"
cnn. Cl ose

End Sub

It is also possible to use Microsoft Data Links to prompt the user for connection
information. The following code demonstrates how to launch the Microsoft Data Links
UI from code. In order to run this code, you'll need to add a reference to Microsoft OLE
DB Service Component 1.0 Type Library in your project.

Private Sub Commandl_d i ck()

Di mcnn As New ADODB. Connecti on
D m dl As New Dat aLi nks

dl . hwhd = Me. hWhd

If dl.Pronpt Edit(cnn) Then
cnn. Open

End If

End Sub

The previous code example could be modified to first specify a default value for the
provider and data source.

Private Sub Commandl_d i ck()

D mcnn As New ADCDB. Connecti on
D m dl As New Dat aLi nks

cnn. Provider = "M crosoft. Jet. OLEDB. 4. 0"
cnn. Properties("Data Source") = "c:\nw nd. ndb"
dl . hwhd = Me. hWhd
If dl.PronptEdit(cnn) Then
cnn. Qpen
End If

End Sub

Many database maintenance activities require that the administrator have exclusive
access to the database. The database cannot be opened exclusively if other people
already have the database open. With DAO, the administrator had no way of
determining who was logged in to the database, making it difficult to determine who
was blocking the administrator's attempt to open the database exclusively.

ADO and the Jet Provider expose a schema rowset that contains information about
who currently has the database open. This is a provider specific schema rowset named
DBSCHEMA_JETOLEDB_USERROSTER. The following code demonstrates how to open
this schema rowset using ADO.

Sub User Rost er ()
" List all of the users that are currently |logged into the database

D mcnn As New ADCDB. Connecti on
Dmrst As ADODB. Recor dset

" Open the connection
cnn. Open "Provi der=M crosoft.Jet. OLEDB. 4. 0; Dat a Sour ce=C: \ nwi nd. ndb; "

" Open the user roster schema rowset
Set rst = cnn. OQpenSchema(adSchemaPr ovi der Specific, |,
JET_SCHEMA_USERROSTER)

" Print the results to the debug w ndow
Debug. Print rst. GetString()

cnn. Cl ose

End Sub

The first parameter, QueryType, to the ADO OpenSchema method takes an
enumeration value. Values are defined for the schema rowsets defined in the OLE DB
specification. To use a provider-specific schema rowset such as
DBSCHEMA_JETOLEDB_USERROSTER, you must specify adProviderSpecific and then
provide the GUID for the schema rowset as the last parameter. In this example, the
constant JET_SCHEMA_USERROSTER is used in place of the GUID. This constant is
contained in the JetOLEDBConstants.txt file included in Appendix C.

The following table describes the information contained in each column of the schema
rowset.

Column Description

COMPUTER_NAME The name of the workstation as specified using the
network icon in the control panel.

LOGIN_NAME The name of the user used to log into the database if
the database has been secured. Otherwise the default
value will be Admin.

CONNECTED True if there is a corresponding user lock in the LDB
file.
SUSPECTED_STATE True if the user has left the database in a suspect

state; otherwise Null.

Microsoft Jet 4.0 includes enhanced support for auto-increment columns that allows
you to specify an initial value for the column, also known as the seed value, as well as
a value by which to increment the column.

The following code demonstrates how to create a new auto-increment column with an
initial value of 10 and an increment value of 100. It assumes the Contacts table
already exists. To create this table, run the ADOCreateTable example code in the
section, "Creating and Modifying Tables" earlier in this document.

Sub ADOCr eat eEnhancedAut ol ncr Col urm()

D m cat As New ADOX. Cat al og
Di m col As New ADOX. Col um
" Open the catal og
cat.Acti veConnection = "Provider=M crosoft.Jet. OLEDB. 4.0;" & _
"Data Source=C: \ nw nd. ndb;"
" Create the new auto increnent colum
Wth col
. Name = "Contactl|d"
. Type = adl nt eger
Set . Parent Catal og = cat
. Properties("Autolncrenent") = True
. Properties("Seed") = CLng(10)
. Properties("lIncrenent”) = CLng(100)
End Wth
" Append the colunm to the table
cat. Tabl es(" Contacts"). Col ums. Append col

Set cat = Not hi ng

End Sub

In addition to specifying seed and increment values when the column is created, they
can be modified for existing auto-increment columns. Use caution when modifying
these values for existing columns as it is possible to create conflicts with existing
values. For example, if the table already contains values 1 through 10 in the column, it
is possible to set the seed value to 5.

Replica Visibility

JRO introduces a new property of a replica that is used to indicate the visibility of a
replica. The visibility determines which replicas that replica can synchronize with. A
replica's visibility may be Global, Local, or Anonymous. The replica's visibility is set
when the replica is first created. Once the replica is created the visibility cannot be
changed.

A global replica can synchronize with any other replica in the set. Changes at a global
replica are fully tracked. From a global replica, you can create replicas that are global,
local, or anonymous. Replicas created from a global replica are global by default.

A local replica can synchronize only with its parent, a global replica, and will not be
permitted to synchronize with other replicas in the replica set. The parent will proxy
any replication conflicts and errors for the local replica. Other replicas will not be
aware of the local replica. The parent replica can schedule a synchronization with a
local replica. All replicas created from a local replica will also be local and inherit the
same parent replica.

An anonymous replica can synchronize with its parent, a global replica. These are
replicas who, say, subscribe by way of the Internet, who do not have any particular
identity, but instead proxy their identify for updates to the publishing replica. A global
replica will not be able to schedule synchronizations to an anonymous replica.
Anonymous replicas provide a way of getting around the "limit on number of replicas"
problem. In addition, it helps to keep out unnecessary topology information about
replicas that participate only occasionally. All replicas created from an anonymous
replica will also be anonymous and inherit the same parent replica.

The following code demonstrates how to create a new Anonymous replica:

Functi on MakeAnonReplica(strReplicableDB As String,
strNewReplica As String) As Integer

Di m repMaster As New JRO. Replica
repMast er. Acti veConnecti on = strReplicabl eDB

repMaster. Creat eReplica strNewReplica, "Replica of " & _
strReplicableDB, , jrRepVisibilityAnon

Set repMaster = Not hi ng

End Function

Replica Priority

JRO introduces a new property of a replica that is used to indicate the relative
importance of a replica during synchronization. If conflicts are encountered during
synchronization the replica with the highest priority wins.

The following code demonstrates how to set the priority when creating a new replica:

Functi on MakeAdditi onal Repli ca(strReplicableDB As Stri ng,
strNewReplica As String, intPriority As Integer) As Integer

Dim repMaster As New JRO Replica
repMast er. Acti veConnection = strReplicabl eDB

repMast er. Creat eReplica strNewReplica, "Replica of " & _
strReplicableDB, , , intPriority

Set repMaster = Not hi ng

End Function

Indirect Synchronization

With a direct synchronization your machine is tied up until the synchronization is
complete. On fast Local Area Networks (LANs) this may not be an issue. However,
synchronization over a slow Wide Area Network (WAN) may take many minutes or
more. Indirect synchronization was designed for this scenario. For an indirect
synchronization, the syncrhonizer leaves the changes in a dropbox and control returns
to the application. The synchronizer for the other replica will then pick up the changes
and apply them.

The following code demonstrates how to perform an indirect synchronization:

Sub TwoWayl ndi r ect Sync()
DimrepMaster As New JRO. Replica
repMast er. Acti veConnecti on = "Nort hw nd. ndb"
’ Sends changes made in each replica to the other.
repMast er. Synchroni ze "Nwreplica. mdb", jrSyncTypel npExp,

j rSynchModel ndi r ect

Set repMaster = Not hi ng

End Sub

Synchronizing Changes with a Microsoft
SQL Server

JRO supports synchronizing changes between a Microsoft SQL Server and a Microsoft
Jet database. Note, the Microsoft Jet database and its synchronizer must already be
configured to support the replication to SQL Server.

The following code demonstrates how to perform a Microsoft Jet to SQL
synchronization:

Sub Jet SQLSync()
DimrepMaster As New JRO. Replica
repMast er. Acti veConnecti on = "pubs. ndb"

Sends changes nmade in each replica to the other.
repMast er. Synchroni ze "" , jrSyncTypel npExp,
j rSynchModeDi r ect

Set repMaster = Not hi ng

End Sub

Notice the TargetReplica parameter for the Synchronize method is an empty string ("")
and the SyncMode is jrSyncModeDirect. Leaving the TargetReplica blank indicates that
this is a Microsoft Jet to SQL Server synchronization. All Microsoft Jet to SQL Server
synchronizations are direct.

Column Level Conflict Resolution

Column level conflict resolution lets you merge two records and only report a conflict if
simultaneous changes have been to the same field. If you frequently have overlapping
updates in the same row, setting this option could increase performance.

This option is set when a database is made replicable, it cannot be changed once the
process of making the database replicable is complete. Column level conflict resolution
is turned on by default.

The following code demonstrates how to turn on column level tracking when making a
database replicable:

Sub MakeDesi gnMast er ()

Di m repMaster As New JRO. Replica

repMast er. MakeRepl i cabl e "Nort hwi nd. ndb", True
Set repMaster = Not hi ng

End Functi on

For an example of how to turn off column level tracking when making a database
replicable, see the JRO code example in the section "Making a Database Replicable".

Obsolete Properties and Methods

This topic describes several properties and methods that don't map to properties or
methods in ADO, ADOX, or JRO. However, that does not imply that the functionality
provided by the DAO properties and methods is not available in ADO, ADOX, or JRO.

Below, each property or method not exposed is listed and followed by a description of
why it is not exposed and, if applicable, how to get the equivalent functionality using
ADO, ADOX, or JRO.

Object Property/Method Explanation

DBEnNgine DefaultType DAO 3.5 introduced ODBCDirect as a means
to work with ODBC data sources without
loading the Microsoft Jet database engine. To
use ODBCDirect, you set the DefaultType
and/or Type properties to dbUseODBC.

As discussed in the "Introduction" section,
ADO has a different approach to enabling
access to ODBC data sources as well as
enabling native access to various data sources
such as Microsoft SQL Server. ADO allows the
user to choose which OLE DB provider they
want to use to access the data. So, to work
with ODBC data sources without loading the
Microsoft Jet database engine, specify
MSDASQL rather than Microsoft.Jet.OLEDB.4.0
as the provider name.

DBEngine DefaultPassword

DBEngine DefaultUser

DBENgine RegisterDatabase

DBEngine RepairDatabase The functionality found in RepairDatabase has
been incorporated into CompactDatabase in
Microsoft Jet 4.0. Compacting a database will
also repair it.

Workspace Name

Workspace Type See comments for DBEngine DefaultType

property.

Database V1xNullBehavior

Recordset

Recordset

Recordset

Recordset

Recordset
Recordset
QueryDef

Container
Document
User
User

Group

CacheStart
Edit

FillCache
LastModified

Name
Restartable

ReturnsRecords

Name
Name
Password
PID

PID

The process of updating records has been
simplified with ADO such that Edit is not
needed. With DAO, you had to call the Edit
method to put the Recordset into edit mode
before modifying a value otherwise an error
would occur. With ADO, modifying a value
automatically puts the Recordset in edit mode.

After modifying a record (or creating a new
one) and calling the Update method to save
the changes, DAO users had to set the
Bookmark property to the LastModified
property to ensure that the current record was
the record they had just modified. With ADO,
this is not necessary as ADO automatically
ensures that the current record stays the
same after a call to Update.

With DAO QueryDefs it was necessary to know
whether or not the query returned records in
order to execute the query. If the query
returned records, you had to use the
OpenRecordset method to execute the query.
If it did not return records, you had to use the
Execute method.

With ADO you no longer need to know
whether or not the query returns records in
order to execute it because the Execute
method is used in either case. If the query
returns records, the Execute method returns a
Recordset object otherwise it returns Nothing.

Appendix A: DAO to ADO Quick
Reference

The table provided below is intended to be a quick reference for determining how to
map DAO properties and methods to ADO, ADOX, and JRO properties and methods.
However, it is not intended to imply a direct, one-to-one mapping between the
properties and methods listed. There may be subtle, or not so subtle, differences

between the mapped properties and methods. For more detailed information on the
ADO, ADOX, and JRO properties and methods see the documentation for the object
model. Use the information provided earlier in this document to map the code for

common tasks that are performed using DAO to ADO, ADOX, and JRO code.

DAO Object Property/Method ADO/ Object Property/Method
ADOX
/IRO
Model
DBEngine DefaultType! N/A N/A N/A
DBEnNgine DefaultPassword? N/A N/A N/A
DBEngine DefaultUser’ N/A N/A N/A
DBEnNgine IniPath ADO Connection Jet OLEDB:Registry Path?
DBEngine LoginTimeout ADO Connection ConnectionTimeout
DBEngine SystemDB ADO Connection Jet OLEDB:System
Database”
DBEnNngine Version ADO Connection Version
DBEngine BeginTrans ADO Connection BeginTrans
DBEngine CommitTrans ADO Connection CommitTrans
DBEngine Rollback ADO Connection RollbackTrans
DBEngine CompactDatabase JRO JetEngine CompactDatabase
DBEngine CreateDatabase ADOX Catalog Create
DBEnNngine CreateWorkspace ADO Connection Open
DBEngine Idle JRO JetEngine RefreshCache
DBEnNgine OpenDatabase ADO Connection Open
DBEngine RegisterDatabase’ N/A N/A N/A
DBENngine RepairDatabase’ N/A N/A N/A
DBEngine SetOption ADO Connection Properties®
Workspace IsolateODBCTrans ADO Connection Isolation Levels?
Workspace LoginTimeout ADO Connection ConnectionTimeout
Workspace Name!? N/A N/A N/A
Workspace Type? N/A N/A N/A
Workspace UserName ADO Connection User 1d”
Workspace BeginTrans ADO Connection BeginTrans
Workspace CommitTrans ADO Connection CommitTrans
Workspace Rollback ADO Connection RollbackTrans
Workspace Close ADO Connection Close
Workspace CreateDatabase ADOX Catalog Create
Workspace CreateGroup ADOX Groups Append

Workspace
Workspace
Database
Database
Database
Database
Database
Database

Database

Database
Database
Database
Database
Database
Database

Database

Database
Database
Database
Database
Database
Database
Database
Database
Database
Recordset
Recordset
Recordset
Recordset
Recordset

Recordset

Recordset
Recordset

Recordset

CreateUser
OpenDatabase
CollatingOrder
Connect

Name
QueryTimeout
Replicable
Replicald

ReplicationConflictF

unction
RecordsAffected
Transactions
Updatable
V1xNullBehavior
Version

Close

CreateProperty

CreateQueryDef
CreateRelation
CreateTableDef
Execute
MakeReplica
NewPassword
OpenRecordset
PopulatePartial
Synchronize
AbsolutePosition
BOF

EOF

Bookmark
Bookmarkable

CacheSize

CacheStart!
DateCreated
LastUpdated

ADOX
ADO
ADO
ADO
ADO
ADO
JRO
JRO
JRO

ADO
ADO
ADO
N/A

ADO
ADO
N/A

ADOX
ADOX
ADOX
ADO
JRO
ADOX
ADO
JRO
JRO
ADO
ADO
ADO
ADO
ADO
ADO

N/A
ADOX
ADOX

Users
Connection
Connection
Connection
Connection
Connection
Replica
Replica
Replica

Connection
Connection
Connection
N/A

Connection
Connection
N/A

Command
Key

Table
Connection
Replica
Catalog
Recordset
Replica
Replica
Recordset
Recordset
Recordset
Recordset
Recordset

Recordset

N/A
Table
Table

Append

Open

Locale Identifier®
ConnectionString
Data Source®
CommandTimeout
MakeReplicable
Replicald

ConflictFunction

Execute(RecordsAffected)

Transaction DDL?
Mode

N/A

DBMS Version”
Close

Not supported in this
release

Dim New”

Dim New”

Dim New”
Execute
CreateReplica
Modify

Open
PopulatePartial
Synchronize
AbsolutePosition
BOF

EOF
Bookmark
Supports

Jet OLEDB:Fat Cursor
Cache Size?

N/A
DateCreated
DateModified

Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset

Recordset

Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset

Recordset

EditMode
Filter

Index
LastModified*
LockEdits
Name!
NoMatch
PercentPosition
RecordCount
RecordStatus
Restartable
Sort
Transactions
Type
Updatable

ValidationRule
ValidationText
AddNew
CancelUpdate
Clone

Close
CopyQueryDef
Delete

Edit"
FillCache®
FindFirst
FindLast
FindNext
FindPrevious
GetRows
Move
MoveFirst
Movelast
MoveNext

MovePrevious

ADO
ADO
ADO
N/A

ADO
N/A

ADO

ADO
ADO
N/A

ADO

ADO
ADO

ADOX
ADOX
ADO
ADO
ADO
ADO
ADO
ADO
N/A
N/A
ADO
ADO
ADO
ADO
ADO
ADO
ADO
ADO
ADO
ADO

Recordset
Recordset
Recordset
N/A
Recordset
N/A

Recordset

Recordset
Recordset
N/A

Recordset

Recordset

Recordset

Table
Table
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
N/A

N/A
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset
Recordset

Recordset

EditMode
Filter
Index
N/A
LockType
N/A

Find

RecordCount
EditMode
N/A

Sort

CursorType

Recordset.Supports(adUp

date)
ValidationRule
ValidationText
AddNew
CancelUpdate
Clone

Close

Source
Delete

N/A

N/A

Find

Find

Find

Find

GetRows
Move
MoveFirst
MovelLast
MoveNext

MovePrevious

Recordset
Recordset
Recordset
Recordset

QueryDef

QueryDef

QueryDef
QueryDef
QueryDef
QueryDef
QueryDef
QueryDef
QueryDef

QueryDef
QueryDef
QueryDef
QueryDef
QueryDef
QueryDef
QueryDef

QueryDef

QueryDef
QueryDef
TableDef
TableDef
TableDef

TableDef
TableDef
TableDef
TableDef
TableDef
TableDef

OpenRecordset
Requery

Seek

Update

CacheSize
Connect

DateCreated
LastUpdated
KeepLocal
LogMessages
MaxRecords
Name
ODBCTimeout

RecordsAffected
Replicable
ReturnsRecords!
SQL

Type

Updatable

Close
CreateProperty

Execute
OpenRecordset
Attributes
ConflictTable

Connect

DateCreated
LastUpdated
KeepLocal
Name
RecordCount

Replicable

ADO
ADO
ADO
ADO
ADO

ADO

ADOX
ADOX
JRO

ADO
ADOX
ADO

ADO
JRO
N/A
ADO

ADO/X

ADO
ADO
ADOX
JRO
ADOX

ADOX
ADOX
JRO

ADOX

JRO

Recordset
Recordset
Recordset
Recordset

Command

Command

Procedure
Procedure

Replica

Command
Procedure

Command

Command
Replica
N/A

Command

Command /
Procedure

Command
Recordset
Table
Replica
Table

Table
Table
Replica
Table

Replica

Open
Requery
Seek
Update

Jet OLEDB:Fat Cursor
Cache Size?

Jet OLEDB:Link
datasource?

DateCreated
DateModified
Get/SetObjectReplicability

MaxRecords
Name

Jet OLEDB:0ODBC
Command Timeout?

Execute(RecordsAffected)
Get/SetObjectReplicability
N/A

CommandText

Set to Nothing

Not supported in this
release

Command.Execute
Open

Properties®
ConflictTables

Jet OLEDB:Link
Datasource?

DateCreated
DateModified
Get/SetObjectReplicability

Name

Get/SetObjectReplicability

TableDef
TableDef

TableDef
TableDef

TableDef

TableDef
TableDef
TableDef

TableDef
TableDef
Field

Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field

Field

Field

Field
Index

Index

ReplicaFilter

SourceTableName

Updatable

ValidationRule

ValidationText

CreateField
Createlndex

CreateProperty

OpenRecordset
RefreshLink

AllowZeroLength

Attributes
CollatingOrder
DataUpdatable
DefaultValue
FieldSize
ForeignName
Name
OrdinalPosition
Required

Size
SourceField
SourceTable
Type
ValidateOnSet

ValidationRule

ValidationText

Value
Clustered

DistinctCount

JRO
ADOX

ADOX

ADOX

ADOX
ADOX
N/A

ADO
ADOX
ADOX

ADOX
ADO/X
ADO
ADOX
ADO
ADO
ADO/X

ADO/X
ADO/X

ADO/X
ADOX

ADOX

ADOX

ADO
ADOX

Filter
Table

Table

Table

Columns
Indexes
N/A

Recordset
Table

Column

Column
Field/Column
Field

Column

Field

Column
Field/Column

Field/Column
Field/Column

Field/Column

Column

Column

Column

Field

Index

FilterCriteria

Jet OLEDB:Remote Table
Name?

Jet OLEDB:Table
Validation Rule?

Jet OLEDB:Table
Validation Text?

Append
Append

Not supported in this
release.

Open
Jet OLEDB:Create Link?

Jet OLEDB:Allow Zero
Length?

Properties®
Collation Name?
Attributes
DefaultValue
ActualSize
RelatedColumn

Name

Attributes
DefinedSize

Type

Jet OLEDB:Validate On
Set?

Jet OLEDB:Column
Validation Rule?

Jet OLEDB:Column
Validation Text?

Value

Clustered

Index
Index
Index
Index
Index
Index
Index

Index

Relation
Relation
Relation
Relation
Relation
Relation
User

User

User

User

User
Group
Group
Group
Container
Container
Container
Container
Container
Container
Document
Document
Document
Document
Document
Document

Document

Foreign
IgnoreNulls
Name

Primary
Required
Unique
CreateField
CreateProperty

Attributes
ForeignTable
Name
PartialReplica
Table
CreateField
Name
Password
PID
CreateGroup
NewPassword
Name

PID
CreateUser
AllPermissions
Inherit
Name'
Owner
Permissions
UserName
AllPermissions
Container?
DateCreated
LastUpdated
KeepLocal
Name'

Owner

ADOX
ADOX
ADOX
ADOX
ADOX
ADOX
ADOX
N/A

ADOX
ADOX
ADOX
JRO

ADOX
ADOX
ADOX
N/A

N/A

ADOX
ADOX
ADOX
N/A

ADOX
ADOX
ADOX
N/A

ADOX
ADOX
ADOX
ADOX
N/A

JRO
N/A
ADOX

Key
Index
Index
Index
Index
Index
Column
N/A

Key

Key

Key

Filter

Key
Column
User

N/A

N/A
Groups
User
Group

N/A

Users
User/Group
User/Group
N/A
Catalog
User/Group
User/Group
User

N/A

Replica
N/A
Catalog

Type

IndexNulls
Name
PrimaryKey
Index.IndexNulls
Unique

Dim New?

Not supported in this
release

Properties®
RelatedTable

Name

FilterCriteria
Parent Table Object®
Dim New?

Name

N/A

N/A

Append
ChangePassword
Name

N/A

Append
GetPermissions
Get/SetPermissions
N/A
Get/SetObjectOwner
Get/SetPermissions
Get/SetPermissions
GetPermissions
N/A

Get/SetObjectReplicability

N/A
Get/SetObjectOwner

Document Permissions ADOX User/Group Get/SetPermissions
Document Replicable JRO Replica Get/SetObjectReplicability

Document UserName ADOX User/Group Get/SetPermissions

! This property or method does not map to ADO, ADOX, or JRO. See the section
"Obsolete Properties and Methods" earlier in this document.

2 This property is part of the object's Properties collection.

3 See the section "Setting Microsoft Jet Database Engine Options" for more information
on mapping the SetOption method to the Connection properties.

* The object is creatable. Use the VBA Dim New syntax to create a new object.

> The DAO Attributes property is a bitmask of a number of constants which map to
several properties in the ADOX model. For a detailed mapping of the DAO constants to
ADOX properties, see the section Creating Local Tables for Table and Field properties.
See the section Enforcing Referential Integrity for Relation/Key properties.

® The primary table in a relationship is represented in ADOX by the Table object that
contains a primary Key object in its Keys collection. Primary keys are specified by a
Type property value of adKeyPrimary.

Appendix B: Microsoft Jet 4.0 OLE
DB Properties Reference

The Properties collections in ADO contain a dynamic set of properties returned by the
OLE DB provider being used. The tables below contain the list of properties, both
standard OLE DB and provider-specific, that are available in the Properties collections
of ADO and ADOX objects when using the Microsoft Jet 4.0 OLE DB Provider.

The Property Name column below is the name of the property used when accessing the
property in the collection. For example, the Data Source property below is accessed as
follows:

Dimcnn As New ADODB. Connecti on
cnn. Properties("Data Source") = "c:\nw nd. ndb"

The Type column indicates the ADO data type for the column. For properties on ADO
objects (Connection, Recordset), ADO will automatically try to coerce the value
specified when setting the property. For example, if the property is type adBStr and
you set the value to 5, ADO will coerce the value to "5". ADOX will not automatically
attempt to coerce property values. If you attempt to set a property of type adBStr in
an ADOX collection to 5, you'll receive a run-time error. When developing in VBA you
can indicate the type for the property value either explicitly or implicitly. To explicitly
specify the data type, use the VBA built-in functions CStr, CLng, CInt, and CBool when
setting properties of type adBStr, adlnteger, adSmallInt, and adBoolean respectively.
For properties of type adBStr, adSmallInt, and adBoolean you can specify the data
type implicitly by using quotes around the string, specifying a number, or using True
or False respectively.

The Default column indicates the default value for the property.

The Attributes column is a bitmask that is used to indicate whether the property can
be read, set, or is required.

Property Name Type Defaul Attributes Description

t
Cache adBoolea True adPropRead Indicates whether the
Authentication n provider is allowed to cache

adPropRequir (. citive authentication

ed) .
information such as a
password in an internal
cache.

Data Source adBStr " adPropRead The name of the database
adPropWrite to connect to.
adPropRequir
ed

Encrypt Password adBoolea False adPropRead Indicates whether the

n password must be sent to
the data source in an

encrypted form.

adPropRequir
ed

Extended Properties adBStr adPropRead A string containing

connection information for

adPropWrite .
opening external
adPropRequir databases.
ed
Locale Identifier adInteger 1033 adPropRead The locale ID of preference.
adPropWrite
adPropRequir
ed
Mask Password adBoolea False adPropRead Indicates whether the
n adProbRequir password must be sent to
PReq the data source in a
ed
masked form.
Mode adInteger adShar adPropRead A bitmask specifying access
eModeD adPropWrite permissions.
enyNon
e adPropRequir
ed
OLE DB Services adlnteger -6 adPropRead
adPropWrite

adPropRequir
ed

Password

Persist Encrypted

Persist Security Info

Prompt

User Id

Window Handle

Jet OLEDB:Compact

Without
Relationships

Jet OLEDB:Compact
Without Replica

Repair

adBStr

adBoolea
n

adBoolea
n

adSmalll
nt

adBStr

adInteger

adBoolea
n

adBoolea
n

False

False

adProm
ptComp
lete

"Admin

False

False

adPropRead
adPropWrite

adPropRequir
ed

adPropRead

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

The password to be used
when connecting to the
data source. When the
value of this property is
retrieved, the provider may
return a mask or an empty
string instead of the actual
password.

Indicates whether the
provider must persist
sensitive authentication
information in an encrypted
form.

Indicates whether the
provider is allowed to
persist sensitive
authentication information
such as a password along
with other authentication
information.

Whether to prompt the user
during initialization.

The user ID to be used
when connecting to the
data source.

The window handle to be
used if the data source
needs to prompt for
additional information.

Used with the JRO
CompactDatabase method.
Ignored when used with the
ADO Connection object or
the ADOX Create method.

Used with the JRO
CompactDatabase method.
Ignored when used with the
ADO Connection object or
the ADOX Create method.

Jet OLEDB:Create
System Database

Jet
OLEDB:Database
Locking Mode

Jet
OLEDB:Database
Password

Jet OLEDB:Don't
Copy Locale on
Compact

Jet OLEDB:Encrypt
Database

Jet OLEDB:Engine
Type

adBoolea
n

adInteger O

adBStr "

adBoolea
n

adBoolea
n

adInteger O

False

False

False

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

Used with the ADOX
Catalog object's Create
method. Ignored when used
with the ADO Connection
object or JRO
CompactDatabase method.

Scheme to be used when
locking the database. Note
that a database can only be
open in one mode at a
time. The first user to open
the database gets
determines the locking
mode used while the
database is open.

See Appendix C: Microsoft
Jet 4.0 Provider Defined
Property Values for the list
of valid values.

Password used to open the
database. This differs from
the user password in that
the database password is
per file, while a user
password is per user.

Used with the JRO
CompactDatabase method.
Ignored when used with the
ADO Connection object or
the ADOX Create method.

Used with the ADOX
Catalog object's Create
method and the JRO
CompactDatabase method.
Ignored when used with the
ADO Connection object.

An enumeration defining
the storage engine
currently in use to access
this database/store.

See Appendix C: Microsoft
Jet 4.0 Provider Defined
Property Values for the list
of valid values.

Jet OLEDB:Global
Bulk Transactions

adlnteger 1

Jet OLEDB:Global
Partial Bulk Ops

adInteger 2

Jet OLEDB:New
Database Password

adBStr "

Jet OLEDB:Registry adBStr "
Path

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

Determines if SQL bulk
operations are transacted.
This property determines
the default for all
operations in the current
connection.

See Appendix C: Microsoft
Jet 4.0 Provider Defined
Property Values for the list
of valid values.

This property determines
the behavior of Microsoft
Jet when SQL DML bulk
operations fail. It can be
overridden on a per-rowset
basis by setting the Jet
OLEDB:Partial Bulk Ops
property.

See Appendix C: Microsoft
Jet 4.0 Provider Defined
Property Values for the list
of valid values.

This property is ignored. It
is used with the OLE DB
IDataSourceAdmin::Modify
DataSource interface which
is not currently exposed in
ADO.

Path to the registry key to
use for Microsoft Jet
information. This does not
include the
HKEY_LOCAL_MACHINE
tag. This value can be
changed to a secondary
location to store registry
values for a particular
application that are not
shared with other
applications that use
Microsoft Jet on the
machine.

For example, the setting for
Access 2000 is:
SOFTWARE\Microsoft\Office
\9.0\Access\Jet\4.0\Engine
s

Jet OLEDB:System adBStr " adPropRead Location of the Microsoft Jet
database adPropWrite system database to use for
authenticating users. This
adPropRequir overrides the value set in
ed the registry or the
corresponding systemdb
registry key used when Jet
OLEDB:Registry Path is
used. This can include the
path to the file.

In addition to the properties in the preceding table, the following properties are
available once the Connection has been opened.

Property Name Type Default Attributes Description

ADO uses a number of the properties exposed in the Recordset's Properties collection
in order to open a Recordset. For instance, ADO will always set the Bookmarkable
property to True if you request an updatable Recordset. As a result, ADO may
overwrite existing values for these properties.

In general, most of these properties are specific to the behavior of the underlying OLE
DB rowset and are not of significant interest or use to the ADO programmer. Of the
properties listed below, the Jet Provider specific properties and the Append-Only
Rowset property are of the most use to the ADO/Microsoft Jet programmer.

Property Name Type Defaul Attributes Description
t
Access Order
Append-Only adBoolea False adPropRead Whether the Recordset will
Rowset n initially exclude existing

adPropWrite records. It prevents editing

adPropRequir or deleting existing records

ed in the table or query
results.
Blocking Storage adBoolea True adPropRead Indicates whether storage

Objects n objects (adLongVarWChar
or adLongBinary fields) may
prevent the use of some

methods.

adPropRequir
ed

Bookmark Type

Bookmarkable

Bookmarks Ordered

Cache Deferred
Columns

Change Inserted
Rows

Column Privileges

Column Set
Notification

Column Writable

Defer Column

adlnteger 1

adBoolea False
n
adBoolea False
n

adBoolea True
n

adPropRead

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead

adPropRequir
ed

adPropRead

adPropRequir
ed

The bookmark type
supported by the
Recordset.

A value of 1 indicates that
the bookmark type is
numeric. Numeric
bookmarks are based upon
a row property that is not
dependent on the values of
the row's columns. The
validity of numeric
bookmarks is not changed
by modifying the rows
columns.

A value of 2 indicates that
the bookmark type is key.
Key bookmarks are based
on the values of one or
more of the row's columns.
A key bookmark may be
left dangling if the key
values of the corresponding
row are changed.

Whether the Recordset
supports bookmarks.

Whether the provider
caches the value of a
deferred column when the
consumer first gets a value
from that column.

Whether new rows can be
changed or modified.

Delay Storage adBoolea
Object Updates n

Fetch Backwards
Hold Rows

Immobile Rows adBoolea

n

IAccessor
IColumnsInfo
IColumnsRowset

IConnectionPointCo
ntainer

IconvertType
ILockBytes
IRowset
IRowsetChange

IRowsetCurrentInde
X

IRowsetIdentity
IRowsetIndex
IRowsetInfo
IRowsetLocate
IRowsetResynch
IRowsetScroll
IRowsetUpdate
IsequentialStream

IStorage

True

False

adPropRead

adPropRequir
ed

adPropRead

adPropRequir
ed

In delayed update mode,
storage objects are also
used in delayed update
mode. Changes to the
object are not transmitted
to the data source until
Update is called.

If the Recordset is ordered
(table-type with a defined
index), inserted and
updated rows (when one or
more of the columns in the
ordering criteria are
updated) obey the ordering
criteria. If the Recordset is
not ordered, then inserted
rows are not guaranteed to
appear in a determinate
position and the position of
updated rows is not
changed.

IStream
ISupportErrorinfo

Literal Bookmarks adBoolea
n

Literal Row Identity adBoolea
n

Lock Mode

Maximum Open
Rows

Memory Usage

Notification
Granularity

Notification Phases
Objects Transacted

Others' Inserts
Visible

Others' Changes
Visible

Preserve on Abort

Preserve on
Commit

Quick Restart
Reentrant Events

Remove Deleted
Rows

Report Multiple
Changes

Return Pending
Inserts

Row Delete
Notification

Row First Change
Notification

Row Insert
Notification

Row Privileges

False

False

adPropRead

adPropRequir
ed

adPropRead

adPropRequir
ed

Bookmarks cannot be
compared as a sequence of
bytes.

The consumer must call
Irowsetldentity::IsSameRo
w to determine whether
two row handles point to
the same row.

Row
Resynchronization
Notification

Row Threading
Model

Row Undo Change
Notification

Row Undo Delete
Notification

Row Undo Insert
Notification

Row Update
Notification

Rowset Fetch
Position Change
Notification

Rowset Release
Notification

Scroll Backwards

Server Data on
Insert

Skip Deleted
Bookmarks

Strong Row Identity
Updatability
Use Bookmarks

Jet OLEDB:Bulk
Transactions

Jet OLEDB:Enable
Fat Cursors

Jet OLEDB:Fat
Cursor Cache Size

adInteger O

adBoolea
n

adInteger O

False

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

Determines if SQL bulk
operations are transacted.
This property determines if
the current command
execution is transacted.

Whether Microsoft Jet
should cache multiple rows
when populating the cursor
for remote row sources.

Number of rows which
should be cached when
using remote data source
row caching. Only used if
DBPROP_JETOLEDB_ENABL
EFATCURSOR is
VARIANT_TRUE

Jet OLEDB:Grbit
Value

Jet

OLEDB:Inconsistent

Jet OLEDB:Locking
Granularity

Jet OLEDB:ODBC
Pass-Through
Statement

Jet OLEDB:Partial
Bulk Ops

Jet OLEDB:Pass
Through Query
Bulk-Op

Jet OLEDB:Pass
Through Query
Connect String

Jet OLEDB:Stored
Query

adInteger O

adBoolea False

n

adlnteger 2

adBoolea False

n

adInteger O

adBoolea False
n

adBStr "
adBoolea False
n

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

Allows inconsistent updates
on query results. Equivalent
to DAO's dbInconsistent
flag.

Determines if a table is
opened using Alcatraz row-
level locking. This property
is ignored unless
DBPROP_JETOLEDB_DATAB
ASELOCKMODE is set to
DBPROPVAL_DL_ALCATRAZ

Tells Microsoft Jet that SQL
text in a Command object
should be passed to the
backend unaltered.

This property determines
the behavior of Microsoft
Jet when SQL DML bulk
operations fail.

Microsoft Jet Connect String
to be used to connect to
the remote data source.
This property is used with
DBPROP_JETOLEDB_ODBCP
ASSTHROUGH and is
ignored unless the value of
that property is
VARIANT_TRUE.

Should the command text
set in
ICommandText::SetComma
ndText be interpreted as a
stored query instead of an
SQL command

Jet OLEDB:Use
Grbit

adInteger O

adPropRead
adPropWrite

adPropRequir
ed

Jet OLEDB:Validate adBoolea False adPropRead Whether Microsoft Jet
Rules On Set n . Validation Rules are
adPropWrite
evaluated when columns
adPropRequir are set or when changes
ed are being committed to the
database.
Property Name Type Defaul Attributes Description
t
Temporary Table adBoolea False adPropRead Indicates whether or not
n adPropRequir the table is _des’;royed when
ed the connection is released.
Jet OLEDB:Cache adBoolea False adPropRead Indicates whether or not
Link n adPropWrite the User Id and password
Name/Password used to open the external
adPropRequir database are saved with
ed the connection information.
This proprety is ignored if
Jet OLEDB:Create Link is
False.
Jet OLEDB:Create adBoolea False adPropRead Indicates whether or not
Link n . the table is a linked table
adPropWrite

adPropRequir
ed

(formerly known as an
attached table).

A linked table is a table in
another database linked to
a Microsoft Jet database.
Data for linked tables
remains in the external
database where it can be
manipulated by other
applications.

Jet adBoolea
OLEDB:Exclusive n
Link

Jet OLEDB:Link adBStr
Datasource

Jet OLEDB:Link adBStr
Provider String

Jet OLEDB:Remote adBStr

Table Name

False

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

Indicates whether or not
the external database is
opened exclusively when
the linked table is created
or used. The value is True if
the external database will
be opened exclusively and
False if the external
database will be opened for
multi-user access.

This property is ignored if
Jet OLEDB:Create Link is
False.

A String containing the
name of the external
database to link to. The
default value is an empty
string ("").

This property is ignored if
Jet OLEDB:Create Link is
False.

Sets or returns a String
containing additional
connection options used
when connecting to the
external database. It is
similar to the Extended
Properties property in the
Connection's Properties
collection. See the section
on External Databases for
more information on
options that can be
specified.

Sets or returns a String
containing the name of the
table to link to. This may be
different than the local
name of the table/link as
specified in the Table's
Name property. The default
value is an empty string

(llll).

This property is ignored if
Jet OLEDB:Create Link is
False.

Jet OLEDB:Table adBoolea False adPropRead Sets or returns a Boolean
Hidden In Access n adPropWrite that indicates whether the
Table will be displayed
adPropRequir through the Microsoft
ed Access user interface.
Jet OLEDB:Table adBStr " adPropRead Sets or returns an
Validation Rule adPropWrite expression thgt is used to
validate data in when a
adPropRequir record is changed or added
ed to the table. This property
is read-only if Jet
OLEDB:Create Link is True.
Expression to be evaluated
on a table in order to
validate the values of a row
before committing the row's
changes. This operates in a
fashion similar to SQL-92
CHECK clauses. This is very
similar to
DBPROP_JETOLEDB_COL_V
ALIDATIONRULE, but this
rule can span multiple
columns within the table,
Jet OLEDB:Table adBStr " adPropRead Sets or returns a String
Validation Text . that specifies the text of
adPropWrite
the message to be
adPropRequir displayed to the user when
ed the validation rule is
violated. This property is
read-only if Jet
OLEDB:Create Link is True.
Property Name Type Defaul Attributes Description
t
AutoIncrement adBoolea False adPropRead Indicates whether the
n . values of the column are
adPropWrite : :
autoincrementing.
adPropRequir
ed
Default adEmpty Empty adPropRead The default value for the
. column. It can be either
adPropWrite

adPropRequir
ed

text or an expression.

Description

Fixed Length

Nullable

Jet OLEDB:Allow

Zero Length

Jet

OLEDB:AutoGenera

te

Jet OLEDB:Column
Validation Rule

Jet OLEDB:Column
Validation Text

Jet

adBStr

adBoolea
n

adBoolea
n

adBoolea
n

adBoolea

n

adBStr

adBStr

adBoolea

OLEDB:Compressed n

UNICODE Strings

False

False

False

False

False

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

adPropRead
adPropWrite

adPropRequir
ed

A description of the column.

Indicates whether the
column is fixed length or
variable length.

Indicates whether the
column can contain a Null
value.

Indicates whether a zero-
length string ("") can be
inserted into this field.
Ignored for data types that
are not strings. .

Indicates whether a GUID
should be automatically
generated for the column.
This property is ignored
unless the column type is
adGUID.

Expression used to validate
the data in a field when it's
changed or added to a
table. The expression must
be in the form of an SQL
WHERE clause without the
WHERE reserved word.

The text that will be
displayed if a user tries to
enter a value that does not
satisfy the validation rule.

Indicates whether Microsoft
Jet will compress UNICODE
strings on the disk. Ignored
if the database is not a
Microsoft Jet version 4.0
database.

Jet adBoolea False adPropRead Indicates whether the data
OLEDB:Hyperlink n adPropWrite in the column is a
hyperlink. This property is
adPropRequir ignored unless the column's
ed data type is
adLongVarWChar.
Jet OLEDB:IISAM adBoolea False adPropRead For Installable-ISAMs, this
Not Last Column n adPropWrite property informs the I-
ISAM that there are more
adPropRequir columns that are going to
ed be added to the table after
this one. If you are using
ITableDefinition: :AddColum
n or
ITableDefintion::CreateTabl
e, it is required that you set
this property for every
column except the last
column
Jet OLEDB:One adBoolea False adPropRead Indicates whether the data
BLOB per Page n . in the column is stored on a
adPropWrite .
single page (True) or can
adPropRequir share database pages
ed (False) to conserve space.
Ignored unless the column's
data type is
adLongVarBinary.
Property Name Type Defaul Attributes Description
t
Auto-Update adBoolea True adPropRead Indicates whether the index
n adPropRequir is maintained automatically
when changes are made to
ed :
the corresponding base
table.
Clustered adBoolea False adPropRead Indicates whether the index
n . is clustered.
adPropRequir
ed
Fill Factor adInteger 100 adPropRead The storage utilization

adPropRequir
ed

factor of page nodes during
the creation of the index.
The value ranges from 1 to
100 representing theh
percentage of use of an
index node.

Initial Size adInteger 4196 adPropRead The total number of bytes
allocated to this structure

adPropRequir at creation time.

ed
Null Collation adlnteger 4 adPropRead Indicates Nulls in the index
. are collated at the low end
adPropRequir of the list.
ed
Null Keys adInteger 0 adPropRead This property corresponds
adPropWrite to the IgnoreNulls property

of the Index object. See the
adPropRequir ADOX documentation for a
ed description of this property.

Primary Key
Sort Bookmarks
Index Type
Unique

Temporary Index

Appendix C: Microsoft Jet 4.0 OLE
DB Provider Defined Property
Values

The Jet Provider defines a number of GUIDs and property values that are for provider
specific features and properties. Because they are provider specific values, ADO does
not expose them in enumeration values or constants.

Use the attached file, JetOLEDBConstants.txt, to make working with these values
easier in a Visual Basic for Applications development environment.

Attribute VB _Name = "Jet OLEDBConst ant s"
Option Explicit

M crosoft Jet database engine versions - used with the Jet OLEDB: Engi ne
Type property

d obal Const JET_ENG NETYPE_UNKNO/N
d obal Const JET_ENG NETYPE_JET10
d obal Const JET_ENG NETYPE_JET11
d obal Const JET_ENG NETYPE_JET20
d obal Const JET_ENG NETYPE_JET3X
d obal Const JET_ENG NETYPE_JET4X
d obal Const JET_ENG NETYPE_DBASE3 10
d obal Const JET_ENG NETYPE_DBASE4 = 11
d obal Const JET_ENG NETYPE_DBASES 12
d obal Const JET_ENG NETYPE_EXCEL30 = 20
d obal Const JET_ENG NETYPE_EXCEL40 = 21

1
1
o

I
g ~ W NP

d obal Const JET_ENG NETYPE_EXCEL50 = 22
d obal Const JET_ENG NETYPE_EXCEL80 = 23
d obal Const JET_ENG NETYPE_EXCEL90 = 24

G obal Const JET ENG NETYPE_EXCHANGE4 = 30

d obal Const JET_ENG NETYPE_LOTUSWK1 = 40
d obal Const JET_ENG NETYPE_LOTUSWK3 = 41
d obal Const JET_ENG NETYPE_LOTUSVK4 = 42

d obal Const JET_ENG NETYPE_PARADOX3X = 50
d obal Const JET_ENG NETYPE_PARADOX4X = 51
d obal Const JET_ENG NETYPE_PARADOX5X = 52
d obal Const JET_ENG NETYPE_PARADOX7X = 53

d obal Const JET_ENG NETYPE_TEXT1X = 60
d obal Const JET_ENG NETYPE_HTML1X = 70
* Bul k - used with the Jet OLEDB: G obal Partial Bulk Ops and Jet

OLEDB: Partial Bul k Ops properties

d obal Const JET_BULKPARTI AL_DEFAULT = 0

A obal Const JET_BULKPARTI AL_PARTI AL 1 " Allow partial conpletion
of the bulk operation. Could result in inconsistent changes since
operations on some rows could succeed and others could fail

d obal Const JET_BULKPARTI AL_NOPARTI AL = 2 " Fail the bul k operation
on a single error.

' Database Locking Mbde - used with the Jet OLEDB: Dat abase Locki ng Mdde
property

d obal Const JET_DATABASELOCKMODE_PAGE = 0

d obal Const JET_DATABASELOCKMODE_ROW = 1

1

Connection Shutdown node - used with the Jet OLEDB: Connection Contro
property

d obal Const JET_CONNCONTROL_PASSI VESHUTDOWN = 1

d obal Const JET_CONNCONTROL_NORMAL = 2

#def i ne DBPROPVAL_JETOLEDB_TCM FLUSH 0x01

' Security GU DS for Access Objects

d obal Const JET_SECURI TY_FORMS = "{c49c842e-9dch- 11d1- 9f Oa-
00c04f c2c2e0} ™

d obal Const JET_SECURI TY_REPORTS = "{c49c8430-9dcb-11d1- 9f Oa-
00c04f c2c2e0} "

d obal Const JET_SECURI TY_MACROS = "{c49c842f-9dch- 11d1- 9f Oa-
00c04f c2c2e0} "

d obal Const JET_SECURI TY_MODULES = "{c49c8432-9dcb-11d1- 9f Oa-

00c04f c2c2e0} ™

Jet OLE DB Provider

bdbb- 00c04f b92675} "

Defi ned Schema Rowsets
d obal Const JET_SCHEMA REPLPARTI ALFI LTERLI ST = "{e2082df 0- 54ac- 11d1-

d obal Const JET_SCHEMA REPLCONFLI CTTAGBLES = "{e2082df 2- 54ac-11d1- bdbb-

00c04f b92675} "

d obal Const JET_SCHEMA USERROSTER = "{947bb102-5d43-11d1- bdbf -

00c04f b92675} "

d obal Const JET_SCHEMA | SAMSTATS = "{8703b612-5d43- 11d1- bdbf -

00c04f b92675} "

Appendix D: Microsoft Jet 4.0 ANSI
Reserved Words

Microsoft Jet 4.0 provides enhanced support for ANSI 92 keywords. For example, with
Microsoft Jet 4.0 you can use the ANSI CREATE PROCEDURE syntax to create a new
query. As a result of this support there are a number of new reserved words. If you
have table or column names that conflict with one of the reserved words, you will now
get a syntax error when referencing it in a query.

ABSOLUTE
ACTION
ADD

ALL
ALLOCATE
ALTER

AND

ANY

ARE

AS

ASC
ASSERTION
AT
AUTHORIZATION
AVG

BEGIN
BETWEEN

DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DELETE
DESCRIBE
DESC
DESCRIPTOR
DIAGNOSTICS
DISCONNECT
DISTINCT
DOMAIN
DOUBLE
DROP

ELSE

END

IS
ISOLATION
JOIN

KEY
LANGUAGE
LAST
LEADING
LEFT
LEVEL

LIKE
LOCAL
LOWER
MATCH
MAX

MIN
MINUTE
MODULE

ROWS
SCHEMA
SCROLL
SECOND
SECTION
SELECT
SESSION
SESSION_USER
SET

SIZE
SMALLINT
SOME

sqQL
SQLCODE
SQLERROR
SQLSTATE
SUBSTRING

BIT
BIT_LENGTH
BOTH

BY

CASCADE
CASCADED
CASE

CAST

CATALOG

CHAR
CHARACTER
CHAR_LENGTH
CHARACTER_LENGTH
CHECK

CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMIT
CONNECT
CONNECTION
CONSTRAINT
CONSTRAINTS
CONTINUE
CONVERT
CORRESPONDING
COUNT

CREATE

CROSS
CURRENT
CURRENT_DATE
CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER
CURSOR

END-EXEC
ESCAPE
EXCEPT
EXCEPTION
EXEC
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FALSE
FETCH
FIRST
FLOAT

FOR
FOREIGN
FOUND
FROM

FULL

GET
GLOBAL
GO

GOTO
GRANT
GROUP
HAVING
HOUR
IDENTITY
IMMEDIATE
IN
INDICATOR
INITIALLY
INNER
INPUT
INSENSITIVE
INSERT
INT

MONTH
NAMES
NATIONAL
NATURAL
NCHAR
NEXT

NO

NOT
NULL
NULLIF
NUMERIC

OCTET_LENGTH

OF

ON

ONLY

OPEN
OPTION

OR

ORDER
OUTER
OUTPUT
OVERLAPS
PARTIAL
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVILEGES
PROCEDURE
PUBLIC
READ

REAL
REFERENCES
RELATIVE

SUM
SYSTEM_USER
TABLE
TEMPORARY
THEN

TIME
TIMESTAMP
TIMEZONE_HOUR
TIMEZONE_MINUTE
TO

TRAILING
TRANSACTION
TRANSLATE
TRANSLATION
TRIM

TRUE

UNION
UNIQUE
UNKNOWN
UPDATE
UPPER

USAGE

USER

USING

VALUE
VALUES
VARCHAR
VARYING
VIEW

WHEN
WHENEVER
WHERE

WITH

WORK

WRITE

YEAR

DATE INTEGER RESTRICT ZONE
DAY INTERSECT REVOKE

DEALLOCATE INTERVAL RIGHT

DEC INTO ROLLBACK

